

Enhancing forest C monitoring and GHG emissions projection using a systems approach: lessons learned from Mexico

Marcela Olguín-Álvarez

September 13th, 2017, Rome, Italy 3er User Workshop, ESA DUE GLobBiomass

Natural Resources Canada Ressources naturelles Canada

1. Background

Since 2011, the Commission for Environmental Cooperation and forest services of North America have collaborated to **improve modeling tools/methods** for monitoring GHG fluxes, while being able to **assess**, **project and communicate the effect that policy decisions can have on GHG emissions in the future**.

Examples of pilot areas

http://www3.cec.org/islandora/en

2. Scenarios for Mexico

- Historic: 2000 to 2016
- Future: a) Baseline: 2017 to 2050 (e.g. average rate of AD as in historic)

b) Mitigation scenarios (2018-2050)

M1^{*} Net 0 deforestation by 2030

M2^{*} M1 + increase 10% forest recovery

M3^{**} Increase forest productivity and harvests up to 50%

M4 All of the above

* e.g. Mexico ´s NDC goal, Climate Change Law ** e.g. ENAIPROS goal

Increase carbon retention in long-lived products (LLP).

- M3a. Same % as in base
- M3b. 100% of increased harvest goes to LLP

Use wood products or wood waste (bioenergy) to replace:

 emissions-intensive products (steel and concrete) and fossil fuels

Systems approach to emission reductions

* Consistent with IPCC-GPG (2003), National Inventories of GHG (2006)

Pilot areas in Mexico

Durango

5.8 M ha of forests

- -~62% managed forest (coniferous and broadleaf)
- -contributes ~30% of the national wood volume
- Quintana Roo:

3.8 M ha of forests

- -~14% managed forest (tropical humid);
- included in REDD+
 program

0 50 100 200 300 Kilometers

50 100 200 300 Kilometers

3. Results and key messages

 Country's mitigation targets should acknowledge state (municipal?) characteristics and components.

4. Final comments

This study provides initial insight since it:

- Inputs are the same as used in national official GHG emissions reporting. In addition:
 - Does not assume a fixed mitigation potential
 - Tracks carbon in HWP
 - o Assesses the potential interaction with other sectors to reduce emissions
 - Shows the implication of non-carbon objectives on the forest sector affecting the achievement of mitigation targets.
- Provides specific information related to Mexico's NDC and Mid-Century plans for 2030 and 2050 using a systems approach
- Can be expanded to other regions of Mexico and other more complex scenarios can now be implemented

5. Potential future work

 Continuing to collaborate to find resources and new partners, to improve information exchange and development of tools and their application

350

300

250 200 150 100 50 0 0 10 20 30 40 50 60 70 80 90 100 Stand age 1.4 Semi-evergreen plains (THF-a) 1.2 ■ Southern hills (THF-b) **P**^{1.0} **D**^{0.8} 0.6 0.4 0.2 0.0 0-10 11-20 81-90 >90 Forest age classes

Quintana Roo

 Growth curves by spatial unit and classifier set, using MLE routine + NFI plot pairs t2-t1

Proxy of age:

- Time since last major disturbance.
- Forest structural atributes

GlobBiomass products provide:

 ✓ New opportunities to develop, compare and improve biomass accumulation rates and age-class structure assumptions

5. Potential future work

Improve assumptions on the effect of disturbances over time

- Improve the efforts modeling of stand-replacing changes (and non-stand-replacing?)
- Move towards more spatially-explicit analysis

Estimated contribution to future net CO₂e ecosystem balance in BAU

Main drivers of net GHG balance:

 $FL \rightarrow FL$ (growth + harvest + fire) $FL \rightarrow OL$ (deforestation)

- Considerations for baselines: Same rate of disturbances yields different net GHG balance over time.
 - aging of forest
 - less forest area over time

Disturbances

12

Transition to generic integration tools for MRV systems and more...

"Full Lands Integration Tool – FLINT"

- ✓ Cover all land uses and carbon pools
- Have projection capabilities and allow scenario testing
- ✓ Use existing country-specific data of varying completeness and quality
- ✓ Allow for continuous improvement
- Not be locked to a specific data set or method (e.g. spatially-explicit and spatially referenced, Tier 1, 2 &3)
- ✓ Support policies beyond GHG reporting

Collaborators

Canada: Werner Kurz, Carolyn Smyth, Michael Magnan, Max Fellows

United States: Richard Birdsey, Alexa Dugan, Craig Wayson, Sean Healey, Grant Domke

Mexico: Marcela Olguin, Vanessa Mascorro, Armando Alanís, Enrique Serrano

CEC: Karen Richardson, Lucie Robidoux

Submitted to Environmental Research Letters:

- Olguin *et al.*, Applying a systems approach to assess carbon emission reductions from climate change mitigation in Mexico's forest sector
- Dugan *et al.*, A systems approach to assess climate change mitigation options in landscapes of the United States forest sector
- Smyth et al., Climate change mitigation in Canada's forest sector: a spatially-explicit case study for two regions

Technical Report submitted to CEC: Magnan et al., Carbon flows and stocks in North America's forest product sector

Grazie mille

m.olguin.alvarez@gmail.com

Natural Resources Canada Ressources naturelles Canada