





## GlobBiomass WP5000 Regional Biomass Estimation

Pedro Rodríguez-Veiga, Heiko Balzter, Kevin Tansey, Agata Hoscilo, Krzysztof Stereńczak, Maurizio Santoro, Oliver Cartus, Johan Fransson, Henrik Persson, Florian Siegert, Sandra Lohberger, Matthias Stängel, Thuy Le Toan, Stephane Mermoz, Alexandre Bouvet, Yriö Rauste, Shaun Quegan, Joao Carreiras

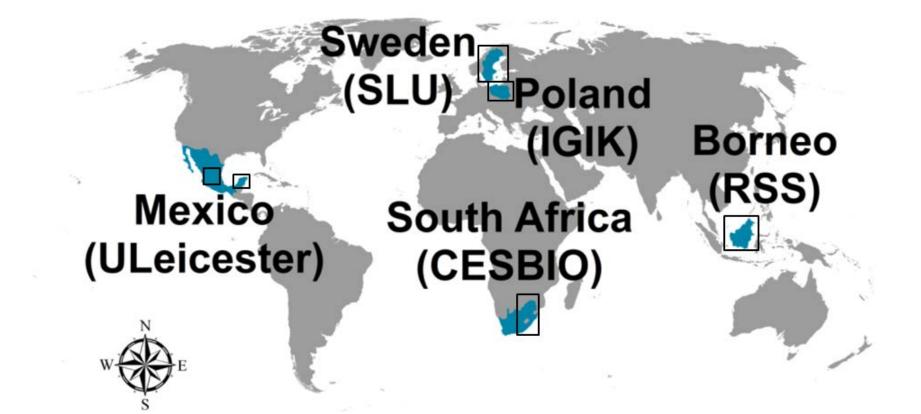
> GlobBiomass User Workshop September 2017 FAO, Rome



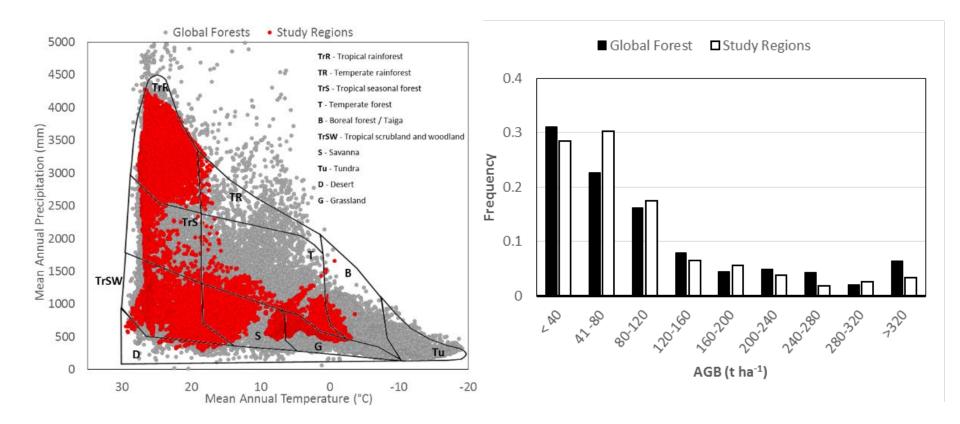
- The regional products are intended to provide the best possible estimates of biomass over a varied set of forest types for 2005, 2010 and 2015, as well as estimates of biomass change between epochs.
- Regional teams will use all data available and expertise from their respective regions
- > These products will provide a reference against which the global product, which will be a single map for 2010, can be assessed.
- For all products a crucial second type of product will be maps describing the accuracy of the products.



### Progress Task 5


| Activities / Deliverables                                                                                                | Dates               | Progress     |
|--------------------------------------------------------------------------------------------------------------------------|---------------------|--------------|
| DA1 Product Development Method document to ESA                                                                           | June/September 2015 | $\checkmark$ |
| Guidelines on uncertainty and accuracy assessment for regional partners working note (input into D5 Validation protocol) | June/November 2015  | $\checkmark$ |
| Regional algorithm developers meeting – Leicester                                                                        | September 2015      | $\checkmark$ |
| DA1 Input into the Algorithm Theoretical Basis Document                                                                  | October 2015        | $\checkmark$ |
| First versions of D11 Biomass 2010 epoch products                                                                        | November 2015       | $\checkmark$ |
| Submission D11 deliverable + readme file to ESA                                                                          | December 2015       | $\checkmark$ |
| Users Workshop & Second PM, feedback and way forward                                                                     | February 2016       | $\checkmark$ |
| Regional Mapping Issues – Videoconference                                                                                | June 2016           | $\checkmark$ |




### Progress Task 5

| Activities / Deliverables        | Dates            | Progress                          |
|----------------------------------|------------------|-----------------------------------|
| D12 Biomass 2000/2005 products   | October 2016     | $\checkmark$                      |
| Round Robin light                | March-April 2017 | $\checkmark$                      |
| D13 Biomass 2015 products        | August 2017      | $\checkmark$                      |
| D14 Change maps                  | September 2017   | NORK IN<br>PROGRESS<br>CONTRACTOR |
| D15 Uncertainty Characterization | September 2017   | WORK IN<br>PROGRESS               |

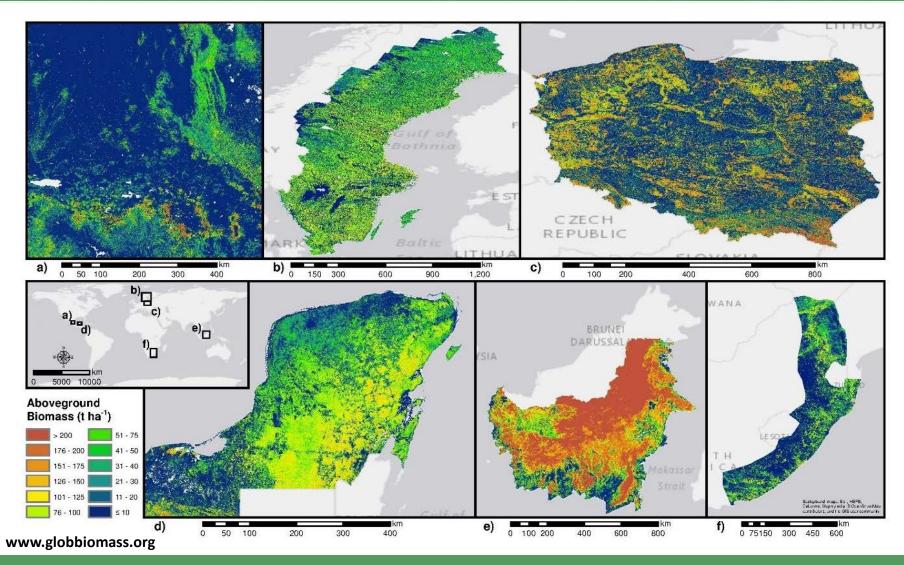










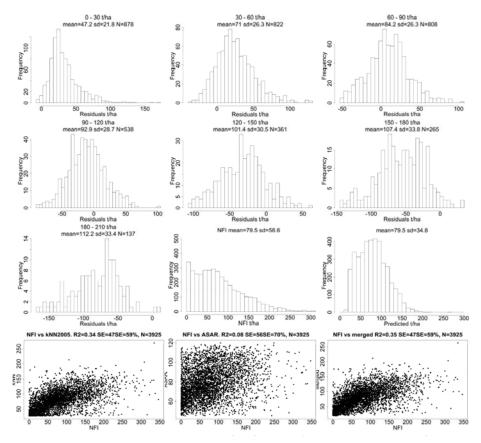

### **Regional Methods**

| Regional Map                          | Method                          | Reference data      |  |
|---------------------------------------|---------------------------------|---------------------|--|
| Kalimantan Indonesia                  | Multiple Linear Regression      | Field plots / LiDAR |  |
| Eastern South Africa                  | Bayesian inversion WCM + MIPERS | Field plots         |  |
| Sweden                                | knn / Biomasar-L                | Field plots         |  |
| Central Mexico &<br>Yucatan peninsula | MaxEnt                          | Field plots         |  |
| Poland Random Forest                  |                                 | Field plots         |  |

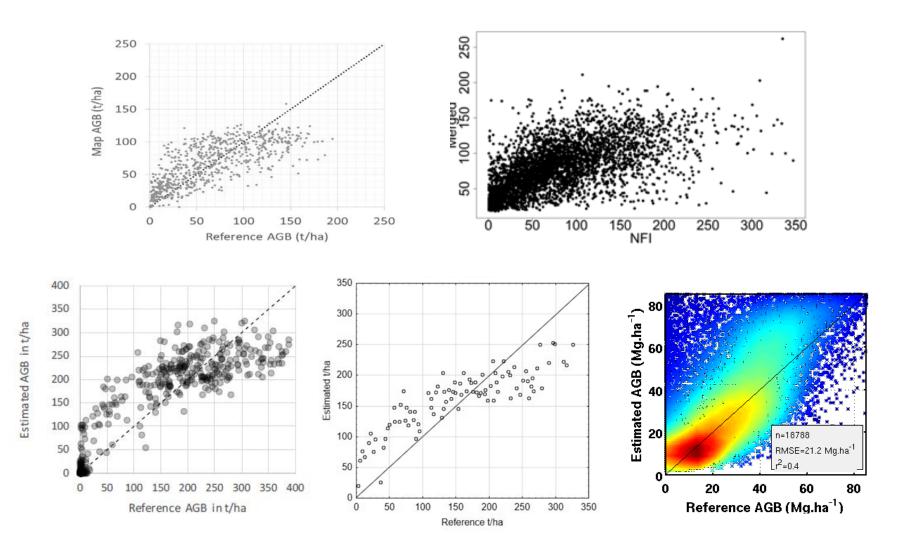


| Regional Map                          | 2005/07                                  | 2010                                     | 2015                                                     |  |
|---------------------------------------|------------------------------------------|------------------------------------------|----------------------------------------------------------|--|
| Kalimantan<br>Indonesia               | ALOS PALSAR                              | ALOS PALSAR                              | ALOS-2 PALSAR-2,<br>Sentinel-1                           |  |
| Eastern South<br>Africa               | ALOS PALSAR,<br>Landsat PTC, SRTM        | ALOS PALSAR,<br>Landsat PTC, SRTM        | ALOS-2 PALSAR-2,<br>Landsat PTC, SRTM                    |  |
| Sweden                                | SPOT 4 and SPOT 5 /<br>ALOS PALSAR       | SPOT 4 and SPOT 5 /<br>ALOS PALSAR       | ALOS-2 PALSAR-2                                          |  |
| Central Mexico &<br>Yucatan peninsula | ALOS PALSAR,<br>Landsat 7 & PTC,<br>SRTM | ALOS PALSAR,<br>Landsat 7 & PTC,<br>SRTM | ALOS-2 PALSAR-2,<br>Landsat 8 & PTC,<br>Sentinel-1, SRTM |  |
| Poland                                | ALOS PALSAR mosaic,<br>SRTM, Landsat 5   | ALOS PALSAR mosaic,<br>SRTM, Landsat 8   | Sentinel-1, Sentinel-<br>2, SRTM                         |  |



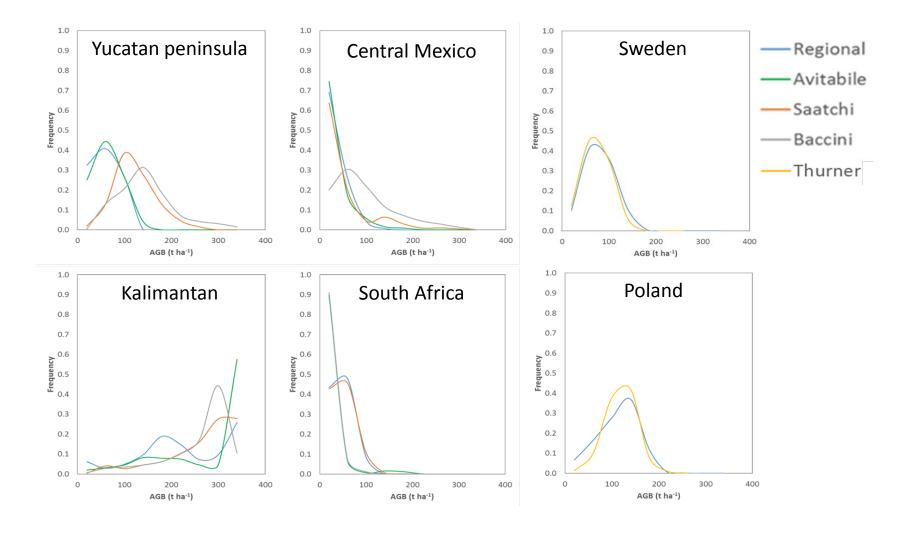






#### Example: Sweden

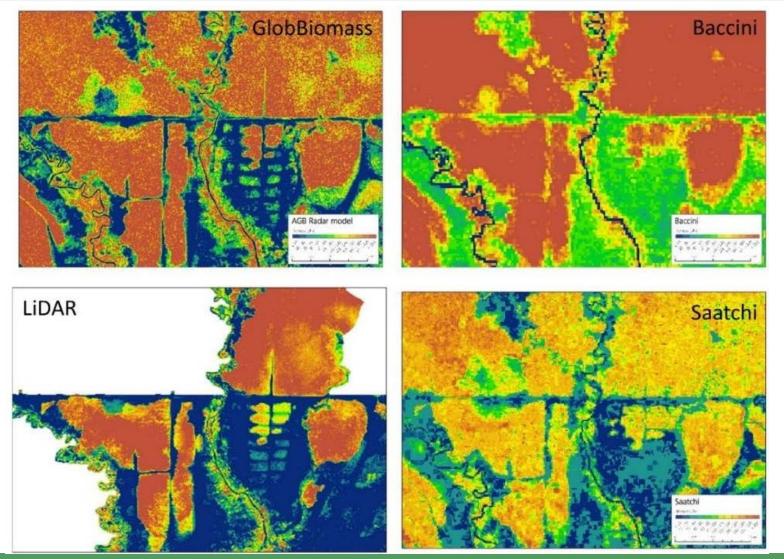
- Validation of AGB stratified by AGB class
- > Bias varies with AGB class:
  - Low biomass has a positive bias
  - High biomass has a negative bias

| 2005 epoch               |       |                                       |                                       |                |                |                     |                |
|--------------------------|-------|---------------------------------------|---------------------------------------|----------------|----------------|---------------------|----------------|
| AGB<br>classes<br>(t/ha) | n     | Average<br>estimated<br>AGB<br>(t/ha) | Average<br>reference<br>AGB<br>(t/ha) | RMSE<br>(t/ha) | R <sup>2</sup> | SD(error)<br>(t/ha) | Bias<br>(t/ha) |
| 0-30                     | 878   | 47                                    | 14                                    | 40             | 0.06           | 22                  | 33             |
| 30-60                    | 822   | 71                                    | 45                                    | 38             | 0.06           | 26                  | 26             |
| 60-90                    | 808   | 84                                    | 74                                    | 28             | 0.02           | 26                  | 10             |
| 90-120                   | 538   | 93                                    | 104                                   | 31             | 0.03           | 29                  | -11            |
| 120-150                  | 361   | 101                                   | 134                                   | 45             | 0.00           | 31                  | -33            |
| 150-180                  | 265   | 107                                   | 164                                   | 66             | 0.00           | 34                  | -57            |
| 180-210                  | 137   | 112                                   | 193                                   | 87             | 0.00           | 33                  | -81            |
| Overall                  | 3,925 | 80                                    | 80                                    | 29             | 0.35           | 29                  | 0              |








### **Comparison to global products**





### Comparison to global products



Example: Kalimantan, Indonesia



- > AGB maps for epochs 2005/07, 2010 & 2015 are available for all study regions
- > Regional experts are contributing to improve the AGB maps
- Different methods for regional-scale forest biomass estimation give reasonable results, but present differences with previous global products
- All regional case studies chose radar and multispectral imagery, augmented sometimes by geomorphometric data from a DEM
- Some algorithms are 'data-hungry' and need hundreds or thousands of training sites (field plots), while others can be run with smaller training datasets
- A challenge for global biomass mapping is the regionally unbalanced availability of forest inventory plot data
- The AGB maps underestimate high AGB levels while low AGB levels are overestimated (due to signal saturation, etc)
- > Uncertainty maps and biomass change maps are being completed







# Grazie

