

GlobBiomass: Algorithm Development Overview

Shaun Quegan & Joao Carreiras, University of Sheffield Yrjö Rauste, VTT Technical Research Centre of Finland Inputs from the whole team

Regional and global products

GlobBiomass has produced regional and global maps of biomass, together with products indicating the accuracy of these maps.

- The **regional** maps are produced independently by the regional teams for the 2005, 2010 and 2015 epochs, and represent the **best biomass estimates** they can make using whatever data are available. Biomass change maps are also produced.
- The global biomass map (for 2010 only) is produced in a consistent way from available global datasets of relevant variables. It aims to be better than any of the existing continental scale maps.

The Algorithm Theoretical Basis Document (ATBD)

The fundamental description of how the biomass products are produced in GlobBiomass is the ATBD. The functions of the ATBD are:

- Concise description of the data and methods used to produce the various maps and accuracy products;
- > To provide enough detail to allow **replication**;
- To give **reasons** for selecting these data and methods (and not selecting others).

Structure of the ATBD: regional

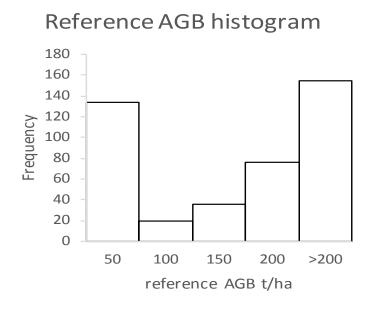
Regional biomass maps (Poland, Sweden, Kalimantan, Mexico, S. Africa):

- a. General description of regions
- b. Datasets: input, training, accuracy assessment, validation
- c. Methods: pre-processing, biomass estimation, training, assigning accuracy, testing accuracy
- d. Products
- e. Properties of the regional products
- f. Methods to calculate regional biomass change
- g. Relation of regional methods and maps to global product

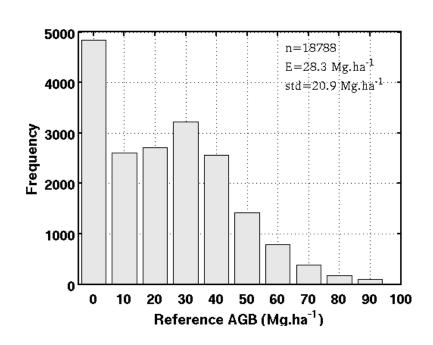
Structure of the ATBD: global

Global biomass map:

- Datasets for input, training, validation, accuracy assessment;
 Rationale for using these datasets
- b. Methods: pre-processing, biomass estimation, assigning accuracy)
 - Several candidate methods: comparison and combination
 - Converting Growing Stock Volume to Above-Ground Biomass
- c. Products


Regional comparison: biomass ranges

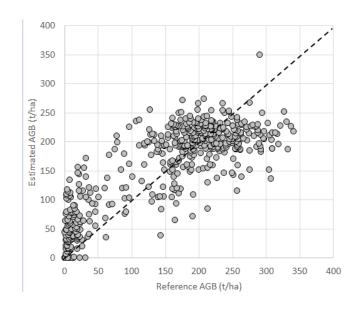
Region	Biomass Range (t/ha) (reference data)				
Poland	0 – 300 t/ha, roughly uniform distribution				
Sweden	0 – 250 t/ha, roughly uniform distribution up to 75 t/ha, then				
	declining in frequency				
Indonesia	0 - 400 t/ha, dominated by AGD > 200 t/ha				
Mexico	Mostly < 150 t/ha, steady decline in frequency with AGB				
South Africa	Mostly < 80 t/ha, largest class is 0 - 10 t/ha, decline in				
	frequency after 40 t/ha				



Biomass ranges

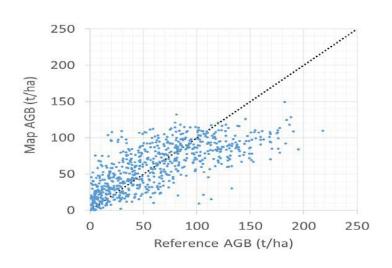
Kalimantan

S. Africa



Regional comparison: methods

Region	Primary Data	Primary Method	Reference Data
Poland	PALSAR 25m	RandomForest	Plot data
	HH+HV mosaics		
Sweden	Spot 4/5, PALSAR	kNN with Spot 4/5 and NFI	National Forest
	strips	data + BIOMASAR	Inventory (NFI) plots.
		approach with multi-	Lidar
		temporal PALSAR data.	Lidai
Indonesia	PALSAR 25m	Regression models	Plots + lidar
	HH+HV mosaics	including ratio and texture	
		values	
Mexico	PALSAR 25m	Maximum Entropy	Plots from the
	HH+HV mosaics,		Mexican NFI
	Landsat and DEM		
South Africa	PALSAR 25m	Bayesian approach using	Lidar + plots
	HH+HV mosaics	the water cloud model	


Accuracy assessment: Indonesia 2010

AGB classes (t/ha)	n	Average estimated AGB (t/ha)	Average reference AGB (t/ha)	RMSE (t/ha)	R²	SD (error) (t/ha)	Bias (t/ha)
0-50	141	50	13	54	0.23	39	37
50-100	21	130	78	71	0.07	50	52
100-150	38	171	132	66	0.08	54	39
150-200	117	194	178	42	0.07	39	16
>200	184	207	247	60	0.01	44	-40
Overall	501	154	149	55	0.69	55	4

Accuracy assessment: Mexico 2010

Site	AGB classes (t/ha)	n	Average estimated AGB (t/ha)	Average reference AGB (t/ha)	RMSE (t/ha)	SD(error) (t/ha)	R ²	Bias (t/ha)
Both	0-30	213	30.7	13.6	26.6	20.4	0.15	17.1
	30-60	159	55.0	44.1	26.6	24.3	0.03	10.9
	60-90	140	74.4	74.7	22.3	22.3	0.12	-0.3
sites	90-120	98	85.2	104.6	29.6	22.4	0.00	-19.4
	>120	99	91.8	146.5	58.7	21.3	0.16	-54.7
	Overall	709	60.8	63.6	32.8	32.7	0.51	-2.8

Regional accuracy: general features

All regional data analysis exhibits:

- Overestimation at low biomass
- Underestimation at high biomass (not S Africa)
- Roughly constant residual error (after correcting for bias) across all biomass ranges
 - Poland & Mexico ~20-25 t/ha; Sweden, 25-35 t/ha;
 - Indonesia, ~65 t/ha; South Africa, ~14-21 t/ha

Global accuracy

Estimated using error propagation taking account of:

- radar backscatter measurement errors
- errors in the terms going into the model-based inversion
- geocoding and resampling

Checked against Growing Stock Volume at several sites.