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“ Product specification and algorithm design
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The development of one or multiple global biomass algorithms is part of
WP3000: define methods leading to an improved global map of AGB (*), taking
into account regional approaches and the scientific basis of the algorithms. The
development shall take into account the Product Specification Document derived
from user requirements (WP1000) and the available ground and space data

(WP2000).

(*) spatial resolution < 500 m and an error expected of max 30%.



Some considerations on biomass estimation
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There is no remote sensing observable that can give us biomass directly

The remote sensing observations in theory most suitable for estimating

biomass globally are either publically unavailable or not yet available
Models inverting EO to biomass are always approximations

What can we do then? Try to extract as much “biomass”-related information as
possible from (i) EO datasets publically available that may relate to biomass and

(ii) methods designed to perform globally



————V “ The GlobBiomass global biomass mapping approach
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“ Strengths and bottlenecks of this approach
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+Use of physically-based models relating SAR data to “biomass” variables

~ No or little in situ data required for model training (but reference data required for
calibrating)

»Parallel development of retrieval approaches

> Is C-band sufficiently reliable to derive unbiased biomass? Is one L-band image
sufficiently reliable to derive biomass fulfilling the requirements set for this project?

> Are the models selected perfoming globally?
> Does the retrieval perform well when no in situ data are used for training?
> Several retrievals work with GSV. How to best link with AGB?

> What are the (best) decision rules to select one retrievalapproach instead of the
others?



—— N “' The forest backscatter model

1) volume scattering from canopies
2) surface scattering attenuated by
canopies

3) scattering from forest floor though

canopy gaps

Water Cloud with gaps:

(0} 0 0
O-for =O—gr Tf0r+0-veg (1_ Tfor)

Transmissivity as function of canopy density, n, and height, h, linked to GSV or AGB:
- 2x ,h
T, =0-n)+tne ©5Y =exp(-pV )=exp( —cB)

B — transmissivity coefficient, k — extinction coefficient, c — attenuation coefficient




| “' Model training and inversion
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~ Need to estimate the model parameters 6%, 6°,, and attenuation
+ Itis highly desirable to have the estimation adaptive at pixel level

v In BIOMASAR-C and —L, the estimation of GO ¢ is supported by VCF products and other auxiliary
datasets requwed to constraining the estlmatlon o physically plausible values. In CESBIO method,
currently in situ data are considered.

+  The coefficient of attenuation is currently set to a constant value in BIOMASAR-C and —L. An e.m. model-
based approach is used by CESBIO

v Inversion is straightforward

+ Multi-temporal combination of biomass estimates from individual observations necessary at C-band
+ Nice and easy but ....

v The automatic estimation of model parameters of BIOMASAR can fail

+Insitu data are not available in sufficient manner everywhere to traing the model precisely

~ The assumption of constant attenuation must be reconsidered

+ Shall we link methods or results? If so, how to cope with the different nature of the output by each
algorithm?



——a BIOMASAR-C

* Global GSV map produced from hypertemporal observation (17 months) of the SAR backscatter by
Envisat ASAR around the year 2010. Pixel size: 0.01 deg.

» Spatial distribution of biomass well captured. Validated at regional level > 10°N

* Limitations: Underestimation in fragmented landscapes and in high-biomass forest (>250 m3/ha)

BIOMASAR-C GSV [m3/ha]




" “ Stage 2 retrieval — Rescaling with Cubist
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0-400+ m3ha color scaling (yellow-dark green)

1) Develop models (Cubist) at 1 km scale linking BIOMASAR-C GSV (response)
and Landsat/PALSAR imagery (predictors) — per PALSAR orbit and 1°x1° tile

2) Predict GSV at full resolution of PALSAR/Landsat imagery



Results with the rescaling method
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Results with BIOMASAR-L
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“' CESBIO method for low biomass forests
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Use of ALOS-PALSAR for low biomass forests (AGB< 150 t/ha)
- Mapping of woody savanna in Africa: Cameroon, Congo basin, South Africa, Africa
- Currently starting validation in Australia
- Looking for collaboration for training/validation in Brasilian Cerrado
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i CESBIO method for high AGB and dense forests
EL_DEEu:lmHE; under test
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Comparison with 1 km in situ data
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— U 1 Mapping of high AGB forests at low resolution (500 m
e e using the HV decreasing trend-A test to be pursued

AGB
500 t/ha

AGB map at 1 km — Avitabile et al.




Outlook
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1. Comparison CESBIO and Gamma maps

— Assessment of validity of model training framework of each stage 2 retrieval approach
presented

* If BIOMASAR-L, Cubist and CESBIO method perform differently > why?
* |s upscaling affected by the issues of the C-band based estimates?
* Is BIOMASAR-L training assumption incorrect?
* Isthe performance of CESBIO affected by the number of in situ observations?
* Isthe estimation of attenuation in BIOMASAR and CESBIO ill-posed?
* How to deal with the decrease of L-band backscatter in high biomass areas?
* How to harmonize Gamma’s GSV and CESBIO’s AGB estimates
2. Integrate CESBIO and Gamma
— Shall we integrate algorithm or maps?
—  Which rules shall be followed?

> There is a lot of work ahead of us. Development and testing will be pursued until summer and
iterations on biomass estimation will be undertaken until end of 2016 when the global biomass
dataset shall be released.



