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1 Introduction and science background

Forest biomass (here understood as above-ground woody biomass [AGB]) is a fundamental biophysical
variable describing the amount of woody matter within a forest. It is crucial to human well-being as a
source of materials (e.g. for building) and energy (around 90% of the energy consumption in sub-
Saharan Africa comes from biomass burning). Its importance in global terms has become even greater
in recent years due to international concerns about climate warming. Biomass losses associated with
Land Use Change (principally in the tropics) translate into CO2 emissions, and are second only to fossil
fuel burning as a source of such emissions (quantified as between 7 and 20% of the total anthropogenic
annual emissions). Biomass gains from forest growth remove CO2 from the atmosphere and form an
important part of the “residual land sink”, thus mitigating climate warming. Indeed, planting of new
forests provided the only means of offsetting carbon emissions under the Kyoto Protocol, and
preservation and better management of tropical forest to conserve carbon stored as biomass is a
fundamental tenet of the UN Reduction of Emissions from Deforestation and Degradation initiative
(REDD+). As a result, biomass is recognised as an Essential Climate variable (GCOS 2003). A further
important contribution of biomass to climate science is as a means of initialising the land component
of couple Earth System Models, quantifying their estimates of carbon fluxes from Land Use Change,
and estimating the turnover time of carbon within forest systems (Thurner et al., 2016).

The purpose of the ESA DUE GlobBiomass project is to provide estimates of Aboveground Biomass
(AGB) that, if possible, improve on existing products and have better characterised and reduced
uncertainties. Biomass products will be developed for five regional sites for the epochs 2005, 2010 and
2015 and there will be one global map for the year 2010. The regional products are intended to provide
the best possible estimates of biomass over a varied set of forest types for 2005, 2010 and 2015,
making use of all data available to the regional teams, as well as estimates of biomass change between
epochs. These will provide a reference against which the global product, which will be a single map for
2010, can be assessed. For all products a crucial second type of product will be maps describing the
accuracy of the products.
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2 Gap analysis

Until comparatively recently, our knowledge about above-ground forest biomass (AGB) and growing
stock volume (GSV) was largely contained in national forest inventories and regional to national scale
summaries, such as those contained in FAQ’s quinquennial Global Forest Resource Assessment (GFRA)
reports (FAO 2006, 2010, 2015). However, these data have several important limitations:

e individual plot data are not distributed;

e the uncertainties in the country data are not reported and are likely to be highly variable,
particularly for countries without a well-developed forest monitoring infrastructure (as is the
case in many tropical forest countries), although the data underlying the individual country
estimates can be accessed through FAO;

e inventory data are concentrated in the boreal and temperate zones to meet the needs of
commercial forestry, and are extremely sparse in the tropics (Figure 2-1; Schimel et al., 2015),
where they are mainly produced by ecological research networks (though this situation is
improving, partly as a result of the UNFCCC Reducing Emissions from Deforestation and Forest
Degradation initiative [REDD+] fostering the development of national inventories in the
tropics);

e the data are not gridded, i.e., they do not represent spatially localised maps of biomass.
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Figure 2-1. Estimates of forest/shrub area, vegetation carbon together with a histogram of the density
of inventory data, each shown as a function of latitude (from Schimel et al., 2015).

Although Kindermann et al. (2008) produced global maps of AGB and GSV on a 0.5° grid by
extrapolating values from country-level statistics in the FAO GFRA 2005 report with the aid of a global
0.5° map of Net Primary Productivity (NPP) and maps indicating human influence, these have largely
unknown and varying errors because of the highly variable quality of the forest data from the individual
nations.

This situation began to change within the last decade as remote sensing data from airborne (especially
lidar) and spaceborne platforms were employed in biomass mapping. The search for consistent
approaches for the tropics prompted use of satellite data calibrated against in situ biomass, with
special emphasis on the archive of forest height estimates derived from the Geoscience Laser Altimeter
System onboard the Ice, Cloud and land Elevation Satellite (ICESat) before its failure in 2009 (Lefsky
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2010). This gave rise to two pan-tropical biomass maps (Saatchi et al. 2010; Baccini et al. 2012) at grid
scales of 1 km and 500 m respectively. These maps exhibit significant regional differences, although
when aggregated to country or biome scale these tend to decrease (Mitchard et al. 2013, 2014).

Gridded biomass datasets have also been generated for other continental-scale regions. Using very
long time series of C-band radar data from the ESA Envisat ASAR, Santoro et al. (2011) produced pan-
boreal biomass maps at a scale of 10 km; this provided the basis for the carbon stock of Northern
Hemisphere forests north of 30°N in Thurner et al. (2013). The National Land Cover Database, the US
National Forest Inventory and topographic data from the Shuttle Radar Topography Mission were
combined to generate a biomass map for the coterminous USA for the year 2000 (Kellndorfer et al.
2012).

The desire for a more homogeneous global product led to the generation within the EC-funded GEO-
CARBON project of a near-global dataset of forest AGB with a posting of 0.01° by assembling and
merging the Saatchi et al. (2011) and Baccini et al. (2012) pan-tropical datasets with a northern mid-
latitude and boreal dataset (Santoro et al., 2015b) (http://www.geocarbon.net). This is affected by
limitations in the input EO data for mapping biomass and approximations in the individual retrieval
approaches and the fact that the individual maps are based on data acquired at different times (2000,
2007-2008 and 2010 respectively). The Saatchi et al. (2011) and Baccini et al. (2012) have also been
combined into a pan-tropical AGB map at 1 km resolution using an independent reference dataset of
field observations and locally-calibrated high-resolution biomass maps (Avitabile et al., 2015).

At country scale, maps of biomass for Sweden have been derived for 2005, 2010 and 2015 using optical
data in combination with the Swedish National Forest Inventory, and several countries have generated
(e.g. Sweden) or are in process of generating (e.g. Gabon) national biomass maps from airborne lidar
data. These are relevant in the context of the regional studies reported in this ATBD.
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3 Regional biomass maps
Regional maps will be produced for epochs 2005, 2010 and 2015 in five contrasting regions:

e Poland: Temperate zone

e Sweden: Boreal zone

e Indonesia: Tropical zone

e Mexico: Tropical-woodland transition

e South Africa: (changed from Northern Congo because of logistical difficulties)

The emphasis in this ATBD is on 2010; different approaches are likely to be needed for the other
epochs because of differences in the data available. Maps of change between epochs will also be
produced at a later stage. The target for accuracy is a relative RMSE (coefficient of variation) of 20%
or better at a spatial resolution of 30-250m. Spatial resolution can, of course, be traded for accuracy
(but only if the biomass estimates are unbiased). The biomass maps should be supplied along with
associated maps depicting accuracy.

The sections of the ATBD for each regional biomass map follow the same structure consisting of four
main sections:

1. General description of each region, to include existing knowledge about biomass, range of
biomass encountered, etc.

2. Datasets
a. Input data (used to drive the biomass algorithm);
b. Training data (used to estimate parameters, e.g. in a regression equation);

c. Validation data (set aside data that will be used to test independently if the estimates
are accurate);

d. Data used for accuracy assessment, which will be used by the regional teams to assign
accuracy to their product, so may include ground data, but must be separate from data
which will be made available to the Validation (WP 7000).

3. Methods
a. Pre-processing of data
b. Biomass estimation algorithms
c. Training methods
d. Methods to assign accuracies in the uncertainty map
e. Methods to test the accuracy of the measurements

4. Products

Commonalities and differences between the regional approaches are discussed in Section 4, with
Section 5 analysing the properties of the regional biomass maps and Section 6 describing the
approach followed to map biomass change across epochs. The relationships between the regional
and global approaches are set out in Section 7. Our conclusions are given in Section 8.
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3.1 Regional map: Poland

3.1.1 General Description

The regional biomass map for 2010 covers all forested areas in Poland. This amounts to about 91,630
km?2, which is 29.3% of the area of Poland. More than 77% of the total forest area is managed by the
State Forests National Forest Holding, whereas the rest belongs to the national parks, private owners
and cooperative owners. Coniferous forest habitats predominate, accounting for 70% of the total
forest area, while broadleaved forest habitats account for 49%. In both groups, upland habitats occupy
around 6% of the forest area and mountain habitats 8.7%. The forest on average is about 60 years old
and average stem volume reaches 270 m*/ ha. The average stem volume is available at forest stand
level over the State Forest (every forest stand is updated in 10 year cycle) and at the plot level as part
of the large-scale National Inventory of Forest Condition.

Due to the limited number of biomass allometric equations specific for various tree species estimating
above ground woody biomass, especially on a nation-wide level, is generally based on conversion
factors applied to the volume of the growing stock. The use of standard conversion factors, as
proposed by international guidelines is questionable, as the inventory systems and definitions of
growing stock differ from country to country (Jabtonski and Budniak, 2014). In Poland, biomass
conversion and expansion factors (BCEF) proposed by the National Center for Emission Management
(KOBIZE report, 2014) are used to convert stem volume to stem biomass at national level. There is no
forest biomass map for Poland.

3.1.2 Datasets

3.1.2.1 Inputdata

Remote sensing imagery sensitive to forest AGB from different SAR sensors are used. The core dataset
is freely available ALOS PALSAR mosaic downloaded from Jaxa (http://www.eorc.jaxa.jp/
ALOS/en/palsar_fnf/fnf index.htm). The mosaic contains normalized radar cross-section, y° for HH and
HV, mask information (ocean flag, effective area, void area, layover, shadowing), local incidence angle,
and total dates from the ALOS launch (Shimada and Ohtaki, 2010). The annual ALOS mosaic is available
at 25 m spatial resolution for 2007, 2008, 2009 and 2010.

In addition, the archive ASAR IM PRI, ASAR APP PRI and ERS-2 PRI images acquired over Poland during
the period 2009-2010 were obtained from ESA (Cat-1 proposal). In total, 42 ERS-2 scenes on ascending
orbits and 179 scenes on descending orbits acquired between March and October 2009 and 2010 were
obtained. In addition, 59 ASAR scenes with dual polarization were downloaded.

Landsat cloud-free image composites (circa year 2013) provided reference multispectral imagery from
the last available year, typically 2013. If no cloud-free observations were available for year 2013,
imagery was taken from the closest year with cloud-free data, within the range 2010-2012. The mosaic
is available from http://earthenginepartners.appspot.com/science-2013-global-
forest/download v1.1.html| (Hansen et al, 2013). Reference composite imagery are median
observations from a set of quality assessed growing season observations in four spectral bands,
specifically Landsat bands 3, 4, 5, and 7. Normalized top-of-atmosphere (TOA) reflectance values (p)
have been scaled to an 8-bit data range using a scale factor (g):

DN=p-g+1

The biomass algorithm has been trained using the ALOS PALSAR mosaics and Landsat cloud-free
composite (bands 3, 4, 5 and 7).
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ASAR and ERS data sets were not used due to i) limited and scattered distribution of scenes over the
entire study area; there were areas, for example on the coastal zone, covered by many images and
areas with no data, ii) just a single coverage of C-band data for some places, and iii) the relationship
between backscatter coefficient (C-band) and biomass values was rather poor (R2=0.07 — 0.1).
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Fig. 3-1¥° for VV polarization in 2010 plotted as a function of AGB, using AGB estimated from the 392
plots grouped into 111 homogenous classes.

Table 3-1. EO data used to derive the biomass algorithm for three epochs.
SPATIAL

DATASET 2005 2010 2015
RESOLUTION

ALOS PALSAR mosaic 25m X X
ALOS PALSAR-2 25m X
ENVISAT ASAR 30m X X
ERS-2 30m X
Shuttle Radar Topography

.. 30m X X X
Mission-SRTM'
Sentinel-1 Dual Polarisation

S5mx20m X

IW Mode
Landsat 8 30m X
Landsat 5 30 m X
Sentinel-2 10 m X

() Elevation data from SRTM corresponds to the year 2000. As it is assumed that topography remains constant,
so the same dataset will be used for all epochs
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3.1.2.2 Training data

A large-scale National Inventory of Forest Condition was carried out in 2005, 2006, 2009, 2010, 2011,
2014 and 2016. The aim of the inventory is to assess the condition of the forest under all forms of
ownership and direction of the large-scale changes based on carefully selected indicators. The
methodology of large-scale inventory of forest condition was developed at the Forest Research
Institute, including the results of national and international (Austria, Finland, Germany, Switzerland
and the United States) surveys in this field. The location of the forest inventory plots correspond to the
ICP Forests (International Co-operative Programme on Assessment and Management of Air Pollution
effects on Forests) programme, which monitors forest on a systematic grid of 16 x 16 km. For the
purposes of the national forest inventory, within each 16 x 16 km grid, 25 L-shaped groups of sampling
plots located in a systematic grid of 4 x 4 km were established (Fig. 3-2). Each L-shaped group of
sampling plots consists of five sampling plots located 200 m apart.

Powierzchnia
ICP Forest

4 km

4km

Figure 3-2. Layout of sampling plots.

The forest inventory plots are circular with radius equal to 12.6 m (0.05 ha) meters. Because the
location of the plots is determined by the regular grid, some of them are partly covered by forest, but
in this project only plots located entirely within the forest were considered. For each inventory year
around 4000 plots lie within forest. For the 2010 biomass map, the field data collected in 2009 and
2010 were used.

The parameters measured in situ, such as DBH, height and number of trees, were transformed to
growing stock volume (m3/plot). The growing stock volume was converted into woody biomass using
the IPCC approach based on biomass expansion factors (BEFs) and wood density (WD) following IPCC
guidelines (Penman et al. 2003; IPCC 2006). In IPCC (2006) report the BEFs in the temperate zone are
set to 1.3 for coniferous forest and 1.4 for deciduous forest. However, the recent FAO Global Forest
Resources Assessment (FAO, 2015) country report for Poland indicates that the BEF should be 1.3 for
all tree species, and this value was used in all biomass estimates reported here. Before applying such
BEFs, merchantable growing stock volume (m?) must be converted to dry-weight (tons) by multiplying
by a conversion factor known as basic wood density (t/m?3). The basic wood density values for the 10
most common tree species in Poland (3 coniferous and 7 deciduous) according to Poland’s National
Inventory Report were obtained from the report of the National Center for Emission Management
(KOBIZE, 2014). The woody biomass was calculated for each sampling plot based on growing stock
volume of the dominant tree species.
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For further analysis based on regression equations, the reference plots were selected to meet two
conditions:
i They must be on terrain with slopes less than 5° (the landform features for each sampling plot
are described in the inventory);
ii. The forest surrounding the plot must be homogenous.

To overcome the problem of small plots, the plot size was enlarged to 50 m radius; the homogeneity
of each large plot was assessed through analysis of the variation coefficient and then it was visually
inspected and compared to the national aerial ortho-photomaps. Only plots that clearly lie in
homogenous forest and are located at least 100 m away from the forest edge were considered for
biomass estimation.

3.1.2.3 Validation data

The reference data were divided into training and validation sets. 70% of sampling plots were used for
training of the algorithm and 30% left aside for the validation.

3.1.2.4 Data used for accuracy assessment

Since there is no biomass map over Poland, ALS data available for 6 test sites scanned in 2007 and 2015
will be used for the accuracy assessment. In addition, the independent information on GSV for forest
stands obtained from the National Forest Inventory Database will be used to assess the accuracy at
stand level.

3.1.3 Methods

3.1.3.1 Pre-processing of data

The uncertainties due to speckle effects in ALOS-Palsar mosaics were reduced by applying multi-
channel filtering with a 7x7 window (Quegan and Yu, 2001). The ALOS mosaics after filtering were used
to calculate additional products, i.e., HH-HV, HH/HV.

A set of ASAR and ERS-2 data was pre-processed with Gamma software. The geocoding was done using
SRTM data. The next step calculated the illuminated area contributing to each individual pixel in slant-
range geometry using the SRTM DEM; this gave improved c° and 7° normalization areas for scenes
exhibiting strong foreshortening and layover. Next, radiometric calibration of multi-look intensity (MLI)
images was performed (calibration steps include range spreading loss correction, antenna gain
correction, normalization reference area correction, correction for calibration constant). Finally,
topographic normalization was done to compensate backscatter effects induced by the terrain (based
on the SRTM DEM). The Refined Lee filter was used to reduce speckle in the individual SAR datasets.
In the next step, the mosaics of ASAR and ERS-2 will be created over Poland and then used as an
additional input to the model.

Landsat cloud-free image composite was downloaded in four tiles, merged, and resampled to 25
meters.

3.1.3.2 Biomass estimation algorithms

To generate the biomass map, the relationship relating y° to biomass was first established using
logarithmic regression. At present, the biomass map for 2010 is produced using the ALOS mosaics for
2009 (HH, HV) and 2010 (HH, HV) and Landsat reflectance (4 bands). Figures 3-3a, b show the
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relationships between v° for HV and HH polarisation for 2010 and 2009, respectively, and calculated
AGB.
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Fig. 3-3a.v° for HV and HH polarization in 2010 plotted as a function of AGB, using AGB estimated from
the 392 plots grouped into 111 homogenous classes.
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Fig. 3-3b. y° for HV and HH polarization in 2009 plotted as a function of AGB, using AGB estimated from
the 392 plots grouped into 111 homogenous classes.

The biomass estimation algorithms for the 2005 and 2010 maps were prepared separately for
coniferous forest (dominant in Poland) and broadleaf forest. The final AGB maps were derived by
combining both maps using the Copernicus Land Monitoring — Forest type layer (available at 20 m
spatial resolution).

3.1.3.3  Training methods

The method to be used for regional biomass estimation in Poland will be based on Random Forest (RF:
Breiman, 2001). This is a machine-learning algorithm approach that uses multiple self-learning decision
trees to parameterize models and uses them to estimate categorical or continuous variables. RF is an
ensemble learning technique, where many decision trees are constructed based on random sub-
sampling of the given data set. In addition, each node of every tree is split based on another random
subset of parameters. A regression model is fitted to the target variable using each of the independent
variables. Then for each independent variable, the data is split at several split points. The regression
result is aggregated by taking the average of the predictions from all trees.

RF regression relating SAR data to the corresponding field calculated biomass is conducted over the
entire country. The RF model is calibrated using a set of training plots located over the entire forested
area except mountains.

The parameterization is performed on 200 single trees in the forest. This number of trees provided the
lowest mean square error using an out-of-bag set of observations (compare Fig. 3-4).
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Fig. 3-4. Example of the learning curve (out-of-bag-error).

The flow chart for the production of the AGB map for 2010 is presented in Figure 3-5.

Training Reference
LELE] ALOS mosaics 2009
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Fig. 3-5 Flow chart of the production of the forest biomass map for 2010.
The Copernicus High Resolution Layers (imperviousness and water bodies) available at 20 m spatial
resolution will be used to mask out water and urban areas. The SRTM data will be used to prepare a

mask for slopes >20 degree.

Strengths, limitations and weaknesses of the method

- The two parameters: number of trees in the forest and the number of variables at each node,
are important and should be tuned with the data.
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- Resistant to overtraining (overfitting) - over-fitting is less of an issue compared to an individual
decision tree and there is no need to prune the trees, which is a cumbersome task (Mishra et
al. 2014).

- Saturation in high biomass is observed in the broadleaved forest, which has lower backscatter
than coniferous; perhaps applying two separate models, one for coniferous and one for
broadleaved forest, may partially overcome the problem with saturation (this needs further
investigation).

3.1.3.4 Methods to assign accuracies in the uncertainty map
The overall accuracy of the reference biomass data is composed of the accuracy of the forest inventory

(measurements), biomass calculation, sampling and prediction, as in the following equation (a
modification of that proposed by Saatchi et al., 2011):

— (2 2 2 2 1
€AGB = (Smeasurement + €BEF + Ssampling + gprediction) /2: [ECI- 3'1]

Here

1. Emeasurement: €rror associated with field data collection, i.e. height, DBH, density and
calculation of stem volume at plot level, a measurement error of 10% is assumed; stem volume
is calculated with an error equal to 1% at national level (at 95% confidence level) (Instrukcja
WISL, 2010).

2. &pgr:errorin calculating biomass using the biomass expansion factors (BEFs) and wood density
(WD). Based on Chave et al. (2004, 2005), the error associated with wood density is taken to
be 10%. The REF error will be calculated by comparison of the biomass values obtained based
on BEF approach and calculated based on the first local allometric equations derived in 2016
in the framework of another project led currently by the Forest Research Institute.

3. Esampling: this error originates from the variability of AGB within the pixel area and depends
on the size of the plots used to upscale the AGB measurements to the pixel level.

4. &prediction: the error calculated for each pixel from the prediction model.

The value of errors 1 and 2 will be provided by the Forest Research Institute, errors 3 and 4 will be
handled as will be suggested by the work package coordinator for all regional sites.

There are also uncertainties associated with the SAR data, namely the radiometric stability of the
PALSAR data estimated by JAXA (0.5 dB) and the standard deviation of y° due to speckle.

3.1.3.5 Methods to test the accuracy of the measurements

The accuracy assessment will be done using the ALS data available for 6 test sites scanned in 2007 and
2015. In addition, the independent information on GSV for forest stand obtained from the National
Forest Inventory Database will be used to assess the accuracy at stand level.

3.1.4 Products
The final products will be a forest biomass map for 2010 and a map of uncertainties.

3.1.5 Modifications for the 2005 and 2015 epochs

Method

Random Forest Regression is used to estimate biomass for all epochs. The biomass estimation
algorithms for the 2005 and 2010 maps were prepared separately for coniferous forest (dominant in
Poland) and broadleaf forest. The final AGB maps were derived by combining forest type estimation
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results using the Copernicus Land Monitoring Forest type layer (available at 20 m spatial resolution).
For the 2015 epoch the biomass algorithms were developed without separating forest types.

Data
2005:

Input data
ALOS mosaic for 2007 and Landsat-5 mosaic for 2005-2006.

Reference data
Forest inventory data for 2005-2006.

2015:

Input data

The 2015 AGB map was derived using a time series of Sentinel-1 Dual polarisation IW mode data for
the period 2015-2016 pre-processed by the University of Jena team. The pre-processing chain consists
of calibration, geocoding (using the SRTM DEM), radiometric normalisation and conversion to y°
GeoTiff. The pre-processing was done using the ESA SNAP toolbox. Multi-channel filtering for individual
Sentinel-1 tracks was applied to reduce speckle. The multi-temporal sum and median for VV and VH
polarisation separately for summer and winter images were then calculated.

A cloud-free mosaic of Sentinel-2 was developed using atmospherically corrected images from bands
2, 3, 4 and 8 available at 10 m spatial resolution.

Reference data
Forest inventory data for 2015-2016.
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3.2 Regional map: Sweden

For Sweden, two alternative methods for regional mapping of AGB for 2010 are proposed: i) k-Nearest
Neighbour) (kNN) estimation based on optical satellite imagery and Swedish National Forest Inventory
(NFI) field plot data; and ii) use of the Water Cloud Model (WCM) applied to ALOS PALSAR/ALOS-2
PALSAR-2 data. Selection of the better approach will be made using the newly produced Airborne Laser
Scanning (ALS)-based national AGB map of Sweden and field plots from the NFI as reference data.

3.2.1 General description of the region

Sweden is situated almost completely in the boreal forest region, though the southernmost parts are
within the hemi-boreal and nemoral regions. Its total land area is 40.8 Mha, of which 23.3 Mha is
productive forest land, 5.2 Mha is mountainous vegetation, 5.1 Mha is wetland and 2.9 Mha is
farmland, according to the Swedish NFI (Fridman et al., 2014; Skogsdata, 2015). The forested land is
dominated by Norway spruce (Picea abies (L.) H. Karst.), Scots pine (Pinus sylvestris L.) and birch (Betula
spp.), where pine and spruce are about 80% of the growing stock. In the hemi-boreal and nemoral
regions there are also forests dominated by beech (Fagus sylvatica) and oak (Quercus robur) present.
The current total stem volume of growing stock is 3398 million m? and the total AGB is more than 2500
million ton. The average growing stock volume and AGB is 106 m3/ha and 58.6 ton/ha, respectively.
The highest plot values (circular plots with either 7 m or 10 m radius) are approximately 1400 m3/ha
for growing stock and 550 ton/ha for AGB.

3.2.2 Datasets

3.2.2.1 Inputdata

Spectral information from satellite images have been used to produce raster datasets. The 2010
dataset used in this project was derived from SPOT-4 HRVIR and SPOT-5 HRG data registered between
2008 and 2010 (approximately 80 percent of the images were registered in 2010). All images were
geometrically precision-corrected to the Swedish National Grid, and the pixel size for all bands was
resampled to 25 meters using cubic convolution. The kNN biomass map is a mapping of forest land
only, and existing map data about land use is utilized to discriminate forest land from other land uses.

The ALOS PALSAR dataset used to generate the nation-wide stem volume data product consisted of
strips of Fine Beam Dual (FBD) images (HH and HV polarization). All images were acquired during 2010.
A gap-filled version using images acquired in the moderate resolution Wide Beam mode (pixel size of
75 x 75 m?) is also available but not considered in this project because it does not fulfil the
requirements on spatial resolution set out in the Statement of Work (< 50 m). The FBD coverage was
almost complete, with a 1% gap in the north (Figure 3-6). On average 8 observations were available,
with a few more observations (up to 24) locally in the southernmost part. The WB coverage was
complete, but the number of observations was lower (on average 4 observations).

The ALOS PALSAR dataset was generated by JAXA EORC and delivered via ftp. In total, 104 FBD image
strips covering Sweden were obtained. FBD images were acquired between May and October 2010.
The images were provided as multi-looked intensity images in radar geometry (multi-look factors of 1
and 5 in range and azimuth). The ALOS PALSAR images covered a swath of 70 km with a pixel size of
approximately 25 m in azimuth and 18 m in slant range, corresponding to 28 m in ground range.

The ALOS PALSAR dataset is unique among all regional case studies because it consists of all images
acquired during the summer and fall of 2010. This dataset of long image strips of ALOS PALSAR data
was obtained as part of the involvement of SLU in the Science Team of the Kyoto and Carbon Initiative.
This multi-temporal dataset is different from the mosaic data publicly available and used by the other




GlobBiomass ‘ Page 20

v 07

SLOERInmMASsS ATBD / DJF Regional Biomass Maps ‘ Date 28-Aug-17

regional teams since it consists of multiple observations of the SAR backscatter. Kyoto and Carbon
Initiative data strips are available to a selected number of users being part of the Science Team and
are produced on demand. Another advantage of the multi-temporal ALOS PALSAR dataset available to
SLU was the possibility to be in full control of the pre-processing, which was not possible for users of
the ALOS PALSAR mosaic data. Occasional issues occurring with the mosaic data such as abrupt
variation of backscatter along image edges (Shimada & Ohtaki, 2010) did not occur.

The benefit of multi-temporal ALOS PALSAR observations in retrieving stem volume was discussed in
Santoro et al. (2015b) where single-image and multi-temporal retrieval where presented and discussed
for two test sites in northern and southern Sweden. The rms error of the stem volume retrieved from
multiple images was always smaller than the errors associated with the individual single-image
retrievals.

A biomass map covering all of Sweden will also be derived using ALOS-2 PALSAR-2 data for the year
2015. So far all requested strip data have been acquired over Sweden and consist of 116 FBD image
strips (October 2014 — June 2016), mostly from ascending orbits (Figure 3-6).

25 s

0

230000 530000 830000

Figure 3-6. Number of ALOS PALSAR backscatter observations over Sweden in FBD mode acquired
during 2010 (left) and October 2014 — June 2016 (right). Maps are in the SWEREF 99 projection (UTM
33).

Multi-temporal data in the same fashion as from the ALOS PALSAR/ALOS-2 PALSAR-2 sensor for the
2010 and 2015 epochs were also available from the Envisat ASAR sensor. Envisat ASAR operated over
the Nordic European countries primarily in the moderate resolution modes Wide Swath and Global
Monitoring. High-resolution modes, Image Mode (IM) and Alternating Polarization (AP), were more
seldom acquired and in an inconsistent manner. For a display of the ASAR data coverage globally, we
refer to Section 7. To adhere with the requirement on spatial resolution set for the regional mapping,
the only suitable dataset would have consisted of images acquired in IM and AP modes. In Wegmdiller
et al. (2013), the temporally densest one-year dataset of ASAR IM (30 images) was investigated at a
forest site in southern Sweden to check whether the hyper-temporal approach implemented in the
BIOMASAR algorithm could be applied to estimate biomass. The retrieval performed poorly (relative
rms error close to 50%) because of the rather small dataset and the lack of many images acquired
during wintertime under frozen conditions guaranteeing the largest possible sensitivity of the SAR
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backscatter to biomass. It is reminded that C-band based retrieval of biomass was reported to be
reliable starting with about 60 scenes (Santoro et. al., 2011).

3.2.2.2 Training data

For the kNN estimation, data from the NFl in Sweden were used. The NFI has the task of describing the
state and changes in Sweden’s forests (Fridman et al., 2014). The information collected is used, for
example, as a basis for forestry, energy and environmental policy in Sweden. The NFI carries out
random sample inventories annually of the Swedish forests and comprises all types of land, but the
most thorough inventory is carried out on productive forest land. It is carried out as two independent
annual systematic field samples, consisting of either temporary or permanent plots (Figure 3-7),
covering all of Sweden annually. The plots are located systematically along the perimeter of square
sample clusters, which vary in size for different regions of Sweden (Ranneby et al., 1987; Fridman et
al., 2014). In most regions, the clusters contain either 12 temporary plots (7 m radius) or 8 permanent
plots (10 m radius). In total, 5000 permanent and 3700 temporary plots are surveyed every year by 15
field teams of surveyors. Approximately 60% of the plots are located on forest land, and on these plots
data on both state and changes are collected. Each plot is surveyed by measuring each tree within a
10 or 7 m radius from the plot centre and recording a large amount of data about the vegetation and
soil type. The position of each plot is determined by GNSS. The survey data about single trees are used
in allometric models to estimate plot-level totals of many variables, such as mean tree height, mean
tree diameter, total stem volume and total AGB. The kNN estimation is based on plot measured data
from the NFI, complemented with satellite image data extracted for each plot based on the
corresponding GNSS coordinate, as input to the kNN algorithm. In total, about 20,000 NFI plots located
on forest land that were field surveyed between 2006 and 2010 have been used to produce each
nation-wide raster dataset with estimated forest variables. All estimates were derived image by image
and the NFI data used for the estimation were forecasted to the year of the image registration using
growth models.

Permanent cluster Temporary cluster
500 m
<4+—>
600 m o O o
o
1200 m 1500 m

O

Figure 3-7. lllustration of the distribution of permanent and temporary clusters in the Swedish NFI.

For ALOS PALSAR/ALOS-2 PALSAR-2, an auxiliary dataset of canopy cover was used as training data.
Here, we selected the 250 m global MODIS VCF dataset (Hansen et al., 2003) for the year 2010 to
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identify "ground" and "dense forest" pixels. To cope with the different resolutions of the MODIS VCF
and PALSAR/ PALSAR-2 datasets, the selection of the two types of pixels and therefore the estimation
of the model parameters % and c%e; was done at the scale of the MODIS VCF dataset. Each PALSAR
image was multi-looked to 300 m, while the MODIS VCF dataset was resampled (nearest neighbour)
to the same pixel size; 300 m represented a trade-off between keeping the spatial distribution of
canopy cover and achieving a spatial distribution similar to the canopy cover at the spatial resolution
of the PALSAR/PALSAR-2 data. In future, we foresee the possibility of using a Landsat-based dataset of
VCF (Sexton et al., 2013), which, at the time of this work, was available only for the year 2000 and
exhibited some artefacts of major importance for the performance of the retrieval algorithm.

3.2.2.3 Internal validation data for national accuracy tests

To validate the satellite-based models, nationwide NFI field samples in combination with ALS data have
been merged to establish accurate wall-to-wall maps of entire Sweden for several common forest
variables, including forest biomass.

This raster database for all forest land in Sweden was produced in 2014-2015 using existing ALS data
and field data from the Swedish NFI. In total, 11,500 permanent plots from 2009 to 2013 located on
productive forest land were used in the project. The NFI plot data were forecasted or hindcasted to
the same year as they were laser scanned with the Heureka system developed at SLU (Wikstrom et al.,
2011). Hence, these ALS-based forest maps represent the condition in the forests for the specific
scanning year, estimating Sweden’s forests from 2009 to 2016.

Since the laser scanning started in 2009, approximately 97% of Sweden’s productive forest land has
been scanned. The scanning is organised in 387 blocks, usually 25 by 50 km in size. For each block the
350 permanent NFI plots closest to the block centre were chosen. These plots were selected from the
block to be estimated as well as nearby blocks scanned with the same scanner type (Leica, Optech or
Riegl) and with the same leaf condition (leaf on or leaf off). Our evaluations show that ALS estimates
for deciduous forest generally have a lower accuracy than estimates for coniferous forest. Not having
leaves on the trees during the ALS campaign does not affect the estimation accuracy much. Itis actually
more problematic to have leaf-on conditions due to difficulties in defining suitable density measures
in the ALS data. Thus, high proportions of deciduous trees (>30%) during leaf-on conditions might lead
to biased estimates (over-estimations).

Plots that had been disturbed between scanning and field measurement were removed, using
information registered during the field inventory and a statistical outlier elimination procedure. In
total, about 15% of the plots were removed.

Linear regression models were used to relate the selected forest variables, or transformations of the
variables, to metrics derived from the ALS data. The regression models were then used to predict forest
data for all grid-cells within the block. A small set of basic models was used for each variable (see Table
3-2), from which the best model was chosen automatically in each estimated block. The best model
was defined as the one with the highest coefficient of determination, R%. The same small set of
alternative models was used to estimate the forest variables (for example stem volume) for all laser-
scanned blocks across Sweden. However, the regression parameters were re-estimated for each block
using field data from the 350 (approximately) closest permanent NFI plots.

Table 3-2: Model definitions where ElevP80, ElevP90 and ElevP95 are the 80™, 90" and 95" percentiles
of the height distribution, ElevStddev is the standard deviation of the height, and H80veg and H90veg
are the products of the proportion of 1st returns from higher than 1.5 m above ground and the 80
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and 90™ percentiles. The associated volume estimations are about 16.9% to 21.8% RMSE at stand level
for a few different independent test datasets around Sweden.
Explanatory Explanatory Explanatory

Modelled variable
variable 1 variable 2 variable 3

Lorey’s height ElevP95

Basal area-weighted diameter ElevP80 H80veg

Basal area-weighted diameter ElevP90 H90veg

Basal area-weighted diameter ElevP80 H90veg

Basal area-weighted diameter ElevP90 H80veg

Volume®® ElevP80 H80veg ElevStddev
Volume?® ElevP90 H80veg ElevStddev
Volume®® ElevP95 H80veg ElevStddev
Volume®® ElevP80 H90veg ElevStddev
Volume?® ElevP90 H90veg ElevStddev
Volume®® ElevP95 H90veg ElevStddev
Basal area H80veg ElevStddev

Basal area H90veg ElevStddev

AGB%> ElevP80 H80veg

AGB%® ElevP90 H90veg

AGBR®> ElevP80 H90veg

AGB®® ElevP90 H80veg

3.2.2.4 Data used for accuracy assessment
The kNN and WCM maps of AGB will be evaluated using the ALS-based maps of AGB and field plots
from the Swedish NFI for the epochs 2005, 2010 and 2015.
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3.2.3 Methods

3.2.3.1 Preprocessing of data

For kNN, field plots are updated to correspond to image year by adding the estimated production
increment over the time difference. Digital maps are used to define and separate forest land from
other land classes and only plots found on forest land are used for classification. Images are
preprocessed in several steps. Geometrically correct images are delivered from the Swedish National
Land Survey (Lantmateriet), where they have been corrected to the Swedish national map grid to a
nominal accuracy of less than 0.5 pixels. Illumination corrections of the images are then conducted to
diminish the topographic effects that otherwise can be prominent in parts of Sweden (Reese et al.,
2003; Tomppo et al., 2008).

For ALOS PALSAR/ALOS-2 PALSAR-2, each strip was calibrated using factors provided by JAXA (-83 dB)
and terrain geocoded using the national DEM of Sweden with 50 m posting (Lantmateriet, 2010). To
cope with inaccuracies in the orbital data, which could cause a shift in the geocoded geometry of 1-2
pixels, a geocoding refinement procedure was used (Wegmidiller, 1999) consisting of a match between
the SAR image to be geocoded and an image considered as reference for the output geometry. Here,
a simulated SAR image from the DEM was used. In flat terrain, where no match could be found, a
mosaic of Landsat images downloaded from the Global Land Cover Facility (GLCF,
http://www.landcover.org) was used. The final geocoding accuracy was below 1/3rd of the pixel size.
The FBD and WB images were geocoded to 25 m 75 m pixel size respectively. The SAR backscatter was
then normalized for slope-induced effects using the approach described in Santoro et al. (2009).
Topography-dependent scattering effects in forests due to the local incidence angle were not
accounted for. Each image strip was tiled using a pre-defined 30 km grid. The size of the tile was set so
that the computing resources could be optimized when estimating stem volume. No additional speckle
filtering was applied. The images were provided in multi-looked format, and visual analysis of the
geocoded images revealed clear fine-scale textural features that would have been lost with additional
filtering. However, the use of the multi-channel filter (Quegan and Yu, 2001) was tested. The spatial
distribution of the backscatter changed only minimally because of the strong correlation between
ALOS PALSAR/ALOS-2 PALSAR-2 data backscatter observations acquired under unfrozen conditions
(Santoro et al., 2009).

3.2.3.2 Biomass estimation algorithms

As a complement to ordinary statistics from the NFI, nation-wide full coverage maps with estimated
forest variables such as growing stock volume, volume per tree species, tree height and stand age can
be created (Tomppo et al., 2008; Fazakas et al., 1999; McRoberts et al., 2010). In Sweden such maps
have been produced by combining remote sensing data and field data from the Swedish NFI using the
kNN method. kNN is a non-parametric classification technique that is widely used for assessment of
forest attribute maps (McRoberts et al., 2010). The Swedish production is semi-automated, using a set
of predefined steps for preparation of field plots and images. Using a combination of NFI plots and
spectral information from SPOT-4/5 images, raster maps of different forest parameters with 25 m pixel
size have been produced for 2000, 2005 and 2010 (Nilsson and Olsson, 2010). Maps are planned to be
produced approximately every fifth year and will be available free of charge via the Internet. They
cover approximately 95% of all forest land, forested wetlands and mountainous forests in Sweden.
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Some small areas are expected to be missing due to lack of suitable satellite imagery, cloud cover being
the usual culprit.

Forest variables are estimated as weighted averages of observed variable values for the k most similar
plots in a feature space defined by the spectral bands in, for example, SPOT-4/5 imagery. Similarity is
defined by the feature space distance d from pixel p to field plot i, and the weight w; , for field plot i
when estimating forest variables for pixel p is defined as:

1 &1

Vvi =
P t
di,p = dj,p

(Eq. 3-2)

for the k plots with the shortest feature space distance to pixel p, otherwise w;, = 0. The estimate of a
forest variable (y) for pixel p is defined as:

K
91) = Zwi,p Yio (Eq. 3-3)

Together these steps create a chain of functions that classifies image by image and, once combined,
result in a mosaic, or map, of forest parameters (Figure 3-8).

=

Figure 3-8. Illustration of the production chain used for the kNN based forest products.

AGB estimation from ALOS PALSAR/ALOS-2 PALSAR-2 data uses a model-based approach exploiting a
WCM with gaps (Askne et al., 1997; Fransson and Israelsson, 1999; Askne et al., 2003; Santoro et al.,
2006; Santoro et al., 2015b) to retrieve forest stem volume from each date in a multi-temporal
sequence of dual-polarized backscatter observations. The estimates of stem volume obtained from
each SAR observation by inverting the trained model are then combined using a linear weighting
scheme (Cartus et al., 2012; Santoro et al., 2006; Santoro et al., 2015b). The performance of this
approach to retrieving forest variables from L-band backscatter was compared with other parametric
and non-parametric approaches in Tanase et al. (2014), and showed no significant shortcomings,
although the comparison was not undertaken in boreal forest. The approach is based on the
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BIOMASAR algorithm, which is also applied for the global biomass mapping. Nonetheless, the
implementation of the estimation of the model parameters is somewhat different due to different
spatial resolutions, EO datasets and auxiliary datasets available for Sweden and at global scale.

The WCM with gaps assumes that the forest backscatter consists of a component coming from the
canopy and a component from the ground that reaches the sensor either through gaps in the canopy
or, attenuated, through the canopy. Double-bounce and multiple interactions are not considered
because in managed boreal forest these terms were found in previous studies to be negligible with
respect to direct scattering (see Santoro et al.,, 2006, and references therein). Polarimetric
decomposition of the fully polarimetric data over two test sites in south and north Sweden was further
used to support our assumption (unpublished work). The total forest backscatter could be explained
as a contribution of a surface and a volume component, and the double-bounce component was
negligible. As a result of literature reports and our local analysis, we decided to neglect a double-
bounce term in the forest backscatter model because of no evidence that such term is necessary. This,
however, does not imply that double bounce should always be neglected as specific forest structures
or growth stages in combination with soil conditions may be characterized by a considerable multiple
scattering component. For this to be taken into account, one would need a detailed description of
forest and soil conditions. As a result of our choice to neglect some scattering types in the inversion
model, we may propagate errors to the estimates of biomass.

The original forest backscatter model expresses the total forest backscatter, 6%, as a function of two
forest variables, forest height, h, and a measure of canopy closure from a microwave perspective
referred to as the area-fill factor, 7.

Oty = [(1— 77)0'3, + nagre*“h ]+ o (l— g ) (Eq. 3.4)
The total forest backscatter is modelled in terms of a ground component and a vegetation component,
where 0%, and 0%, express the backscattering coefficient of the ground and the vegetation,
respectively. The first term of (Eq. 3-4), corresponding to the ground backscatter, takes into account
that the scattered waves return to the radar either through canopy gaps or attenuated by the foliage.
The two-way tree transmissivity is expressed in (Eq.3-4) by an exponential function including a
coefficient for the two-way attenuation per meter, ¢, and the tree height assumed to correspond to
the depth of the vegetation.

The inversion of such a model is cumbersome because it requires knowledge of one of the two forest
variables. Inverting for height would require knowledge of the area-fill factor, i.e. a measure of the
canopy closure seen from the perspective of the radar, which is hardly quantifiable. While it can be
argued that the canopy closure seen by short wavelength radar is close to the optical canopy closure,
there is a difference because the microwaves require larger gaps than the visible wavelengths to
penetrate. Following the explanation of the area-fill factor, an inversion for area-fill is not of interest
to foresters.

The expression for the total forest backscatter can be simplified by assuming a fairly simple relationship
between area-fill factor, tree attenuation and forest transmissivity. This expression has been derived
by comparing the WCM of Equation (3-4) and a WCM expressed as a function of stem volume as in
Pulliainen et al. (1994). A model for area-fill has been introduced in Santoro et al. (2002) as:
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In (Eq. 3-5), the empirical coefficient 8 is introduced to model the two-way forest transmissivity, e
, Where V represents the stem volume (Pulliainen et al., 1999; Santoro et al., 2002). The coefficient 8
depends on forest structure and the dielectric properties of the canopy. At L-band, 8 was estimated

usually to lie between 0.003 and 0.007 in boreal forest (Santoro et al., 2006; Santoro et al., 2015b).

By replacing in (Eq. 3-4) the area-fill factor from (Eq. 3-5) and assuming an allometric function between
height and stem volume (see e.g., Santoro et al., 2002; Askne and Santoro, 2012), the WCM can be
expressed as a function of stem volume only.

o _ 0 H-pV o} -pVv
Ofor = Ggre +Gveg (1—8 )

(Eq. 3-6)

The three model parameters in (Eq. 3-6), 0% 0% and 6, are unknown a priori and need to be
estimated to invert the model to retrieve stem volume. Model training will be discussed in the next
Section.

Given a measurement of the forest backscatter, 6%neas, and the corresponding estimates of the three
model parameters, the inversion of the model in (Eq. 3-6) is straightforward and allows the stem

n

volume, V, to be estimated:

A (0] _ (0]
v :_%m[%J (Eq. 3-7)
gr — “veg

Assuming that N measurements of the SAR backscatter are available for the same unit (i.e., pixel, plot
or polygon), individual estimates of stem volume can be combined as a weighted linear combination
to obtain a new estimate referred to as multi-temporal stem volume, Vn: ( (Eq. 3-8)), with better
accuracy than each of the individual estimates:

V =—i:1N (Eq' 3_8)

mt
Sw

i=1

To maximize the contribution of estimates derived from images with strong backscatter contrast
between unvegetated and dense mature forest, the weights w; are defined as the vegetation-to-
ground backscatter difference in dB for the ith image, c®es - 6%, normalized by the maximum of the
N weights:

0 0
Cyeqi —OCari
w; = Veg(‘)' gr"o (Eq. 3-9)
maX(Uveg'i — O-gr,i )

The plausibility of this definition was demonstrated in boreal forests (Santoro et al., 2011).




BAY GlobBiomass ‘ Page 28
Y‘Y ] v 07
N A
BIOmASsS ATBD / DJF Regional Biomass Maps ‘ Date 28-Aug-17

3.2.3.3  Training methods
The kNN dataset is produced using the non-parametric kNN estimation (training) algorithm applied on
NFI field plots. Hence, no separate training is needed (see Section 3.2.3.2).

The estimation of 0% and 6., is typically undertaken by fitting the model in (Eq. 3-6) to pairs of
measurements of the backscatter and in situ stem volume forming a training dataset (see e.g., Santoro
et al., 2015b). To capture the spatial variability of the backscatter, ideally several local test sites would
be needed to obtain local representations of the modelled backscatter. Using one representation of
the model based on single test site for a large area would introduce a retrieval error due to imperfect
characterization of the backscatter away from the test site in the case of spatial variability of the
environmental conditions. Given the lack of a dense network of samples everywhere in Sweden
suitable for training, we consider the approach implemented in the BIOMASAR algorithm, which
derives the two model parameters of the backscatter without the need for training data and assumes
a certain value for the transmissivity.

BIOMASAR has been developed and validated for C- and L-band multitemporal backscatter
observations and the same type of model as in (Eq. 3-6) (Santoro et al., 2011; Cartus et al., 2012). The
parameters 0% and o, are assumed to be equal to an average backscatter for unvegetated surfaces
(but belonging to a vegetation land-class) and a very dense canopy, respectively. The coefficient 8 is
set constant and equal to 0.004 ha/m?3 as a first approximation, given the lack of direct measurements
of attenuation. While it is understood that such an assumption may introduce errors in the retrieval,
experimental results at two test sites in Sweden revealed that the estimation error introduced by
assuming B = 0.004 ha/m? is negligible when compared to other error sources (e.g., weak sensitivity of
the backscatter to stem volume in dense forest). It is here worth noticing that the approach used in
the regional mapping of biomass of South Africa derives the estimate of a coefficient of forest
transmissivity from a set of in situ observations. While appealing, the method has not been tested in
boreal forest yet and the level of information required by this approach to perform is unclear. This
aspect, however, will be formally investigated in the second year of this project.

The assumption of a constant value for B is currently being challenged in the context of the algorithmic
development for the global biomass mapping part. The regional mapping of Sweden and the global
mapping share the same forest backscatter model but slightly different model training approaches to
cope with the different scopes the models are used (regional mapping in managed boreal forest vs.
global mapping). The algorithm to retrieve biomass from L-band data (ALOS PALSAR for 2010 and
ALOS-2 PALSAR-2 for 2015) will be updated if the algorithmic development of the global biomass
mapping part leads to a significantly different characterization of the B coefficient.

In the remainder of this Section, we outline the estimation of 6% and ¢%, and the procedure to
retrieve stem volume as currently implemented. Improvements are discussed at the end. It is herewith
assumed that we have a stack of multi-temporal SAR backscatter images, co-registered to a common
reference geometry.

Estimation of 6%,

The estimate of 6%, is equal to the average backscatter for pixels labelled as "unvegetated" within a
window of finite size. The unvegetated pixels are selected based on an estimate of canopy cover
fraction from an auxiliary dataset and are defined as a canopy cover fraction below a given threshold.
A reliable dataset of canopy cover fraction contemporaneous with the PALSAR data acquired in 2010
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is the 250 m global MODIS Vegetation Continuous Fields dataset (Hansen et al., 2003) for the year
2010. To cope with the different spatial resolutions of the MODIS VCF dataset and the PALSAR dataset
(25 m), the selection of unvegetated pixels is done at 300 m, so the backscatter is extracted from a
version of the PALSAR image multi-looked from 25 m to 300 m (and a VCF resampled from 250 m to
300 m). The reason for using 300 m is provided in Fransson and Santoro (2014).

As a trade-off between precision of the model parameter estimates and computational burden, the
estimation window is set to 30 x 30 km?. This choice was supported by previous evidence that the L-
band backscatter has a strong temporal consistency (Santoro et al., 2009) and does not present marked
spatial variability at kilometric scale. The threshold for labelling pixels as unvegetated is adaptive,
starting from 15% and reaching at most 30%. The threshold is increased when the fraction of pixels
labelled as unvegetated within the estimation window is less than 0.3%. In this way, we could achieve
estimates of o’ without artefacts for almost all 30 x 30 km? subsets into which the SAR images
available over Sweden were divided. A higher VCF threshold or a smaller fraction of unvegetated pixels
within the estimation window were often characterized by unrealistic estimates of 6% which were
then discarded.

With this approach, a grid of 0%, estimates spaced by 30 km in easting and northing is obtained for
each SAR image. A raster image matching the geometry of the SAR backscatter image is then derived
by bilinear interpolation of the sample estimates.

Estimation of 0°e,

To obtain an estimate of o%.g, the mean backscatter for pixels labelled as "dense forest" within a
window of finite size (taken to be 30 x 30 km?) is first computed. Dense forest pixels correspond to
pixels in the dataset of canopy cover fraction with a canopy cover above 85% of the maximum value
within the estimation window. An estimate is derived when the proportion of dense forest pixels
within the window is above 0.5%. As in the case of 6%, a grid of the backscatter for dense forest,
referred to as o’y spaced by 30 km in easting and northing is obtained for each SAR image. The
estimate of 0°,e, is then obtained from % by compensating for the backscatter component originating
from the ground. The compensation is achieved by inverting (Eq. 3-4) in order to express o’ as a
function of the remaining parameters in the model:

o 0 oAVt
o  Og —O0ge

veg —

1_e*ﬂVdf (3-10)

For the estimation of 6%, a representative value of stem volume for dense forest is required, Vg This
is defined as the 90th percentile of the stem volume distribution within the estimation window (i.e.,
over 30 x 30 km?). The estimation of V4 implies a priori knowledge on the spatial distribution of stem
volume, which can be obtained for example from inventory data or a raster dataset of spatially explicit
values of stem volume (see e.g., Santoro et al., 2015a). For Sweden, Vg is estimated from the kNN
Sweden 2010 dataset, thus implying that an incorrect representation of the spatial distribution of stem
volume in this dataset translates to a retrieval error using the SAR data. An assessment of modelling
and retrieval at the Remningstorp and Krycklan test sites revealed underestimation of stem volume in
the densest forests when utilizing this retrieval approach (Fransson and Santoro, 2014). A possibility
would be to complement the kNN dataset with data from the Swedish NFI. This will be investigated
during the second year of this project. By comparing retrieval results from 2010 and 2015, it will be
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possible to spot errors due to an incorrect modelling (including the parameterization of Vg) and,
therefore, gain confidence in the estimation of this parameter.

Taking into account that the estimation of the model parameters is done at reduced spatial resolution
and stem volume is scale-dependent, it is necessary to use a value of Vg at the same spatial resolution
as the SAR and canopy cover datasets. For this reason the kNN Sweden 2010 dataset was averaged
from 25 m to 300 m and an estimate of V4 was derived at the same pixel size simply to aid estimation
of Pveq.

From the 30 x 30 km? grid of point-wise o°., estimates for a given image, a raster matching the
geometry of the SAR backscatter image is then obtained by bilinear interpolation.

Retrieval of stem volume

The retrieval of stem volume in (Eq. 3-6) is constrained to generate estimates between 0 and a
maximum stem volume, which is set empirically to V4 + 50 m3/ha. Here, the value of V4 for the original
spatial resolution of the SAR data is considered, i.e., 25 m. The stem volume estimate for backscatter
measurements below the smallest modelled backscatter is set to 0 m3/ha. Conversely, if a backscatter
measurement is up to 2 dB greater than the maximum modelled backscatter, the corresponding
estimate is equal to the maximum retrievable value. For backscatter measurements more than 2 dB
above the maximum modelled backscatter, the estimated stem volume is set to not-a-number.

The multi-temporal combination in (Eqgs. 3-8, 3-9) is applied to all estimates of stem volume
corresponding to a backscatter difference (0% — 0°%) larger than 0.5 dB. Images with weak
backscatter contrast between dense forest and unvegetated areas may be detrimental to the final
estimate. The impact of such an assumption (as yet unverified at L-band) is negligible since the forest
backscatter difference at L-band is often greater than 1 dB in Swedish forest (Santoro et al., 2006;
Santoro et al., 2009; Santoro et al., 2015b).

3.2.3.4 Methods to assign accuracies in the uncertainty map
The accuracy assessment for both the kNN and WCM AGB maps will be carried out on a pixel level
using the ALS-based maps of AGB for the epoch 2010.

Given that the estimation of stem volume from the PALSAR data is based on the procedure
implemented in the BIOMASAR algorithm, the quantification of uncertainties for the ALOS PALSAR
based estimates of stem volume is adapted from the procedure applied to quantify uncertainties of
growing stock volume (GSV) estimates derived from hyper-temporal ASAR data and the BIOMASAR
algorithm. It is therefore referred to Section 7.2.10.1 and Santoro et al. (2015a). The procedure is in
line with the guidelines developed by the University of Leicester to provide a common framework for
determining uncertainties, deviating where other data or other ways of quantifying individual
uncertainties are used. For completeness, a brief overview is given; the quantification of the individual
uncertainty components below will be addressed during the second year of the project.

The precision of a stem volume estimate obtained from an observation of the PALSAR backscatter is
determined by propagation of error of (i) the measured SAR backscatter, 6°mneqs, and (ii) the estimates
of the forest backscatter model parameters 0%, 0%, 8 and Vg . Assuming that the errors in the five
variables are uncorrelated and overall small, the variance of the GSV estimate obtained from a single
SAR backscatter observation, oy, corresponds to the sum of the individual variances (uncertainty of a
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SAR backscatter measurement, 500 , uncertainty of the model parameters, 560 , 0, and 5ﬁ,
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uncertainty of the GSV of dense forest, 5\,df ) weighted by the related partial derivatives (Santoro et

al., 2015a):

2 2 2 2 2 ( E q 3-1 1)
! v L[ ev v v L (v :
8, = é‘z(,gm(? 5 j +b2,,g,[7 - ] +5Zag,[6—0] +§2ﬂ(a—] +bzvd,[av ]
OOmess ) o4y e CT0 ) ot ol T ) ol b B gty i LRy

The uncertainty of the multi-temporal stem volume estimate, &, , is then modelled as a linear

combination of the single-image stem volume uncertainties, 5., assuming that the original weights,
V,

w;, are the best estimate of the individual variances of V. across the time series of observations,

Equation 3-8. Nonetheless, the covariance between different observations needs to be taken into
account since L-band observations are highly correlated over vegetated terrain. This aspect has not yet
been formalized for this regional case but we expect to implement the procedure being developed for
the global case using the BIOMASAR-L algorithm (Section 7.2.10.2), this algorithm being very similar to
what has been used here to derive the estimates of GSV for Sweden from the ALOS PALSAR dataset.

3.2.3.5 Methods to test the accuracy of the measurements
The accuracy assessment for both the kNN and WCM AGB maps will be carried out on a pixel level and
also aggregated to larger area units using the ALS-based maps of AGB for the epoch 2010.

3.2.3.6  Methods of merging

The best combination product is created by applying a multiple linear regression where national field
inventory plots are to be explained with the kNN and WCM map-based pixels. From this combination,
the formula is applied to the entire rasters in order to create the merged product.

3.2.4 Products
The following AGB maps will be included and evaluated using the ALS-based maps for the epoch 2010:

e AGB map based on kNN estimation and NFI field plot data,
e AGB map based on WCM based on ALOS PALSAR data.
e Merged map with the best combination of the kNN map and the WCM based map.

The maps are produced image by image and the combined to provide mosaics, or maps, of AGB with
a pixel size of 25 m by 25 m for the entire country.

It is noted that retrieval based on ALOS PALSAR mosaic data (i.e., a single backscatter observation) is
known to perform worse than multi-temporal retrieval and is, therefore, not addressed in this study.

3.2.5 Modifications for the 2005 and 2015 epochs
Methods
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kNN estimation applied to optical SPOT-4/5 images for the 2005 product. Inversion of WCM for
nationwide ENVISAT ASAR data (150 m pixels) for the 2005 product. Moreover, the combination of
these maps is evaluated using linear regression, with the respective maps as explanatory variables.
Inversion of WCM for nation-wide ALOS-2 PALSAR-2 data for the 2015 product. Additionally, kNN
estimation applied to optical Sentinel-2 images for a subset of Sweden for 2015. Also inversion of WCM
for this subset of Sweden, using Sentinel-1 data. The combination of the two methods will be evaluated
for the subset, initially using linear regression, as with the 2005 and 2010 products. If we can derive an
improved weighting of the maps from the separate data sources, we will use that instead.

Data
2005:

Input data
kNN based AGB map with 25 m pixel size (based on NFI+SPOT-4/5 imagery) and WCM based stem
volume map (based on ENVISAT ASAR).

Reference Data
NFI plots from 2005/2006.

2015:

Input data
ALOS-2 data with 25 m pixel size for nationwide product. Sentinel-1 and Sentinel-2 data for subset of
Sweden.

Reference Data

NFI plots and additional test site data at plot- and stand-level for the subset region Remningstorp. An
ALS-based map of AGB/stem volume is available for the period 2009-2015, where large blocks of
estimated data are available for each year during this period.
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3.3 Regional map: Indonesia

3.3.1 General description of the region

The regional area of Indonesia is represented by the Indonesian part of Borneo, which is named
Kalimantan, and covers 73% of Borneo’s land mass. The north of Borneo comprises the Malaysian
states of Sarawak and Sabah and the small independent Sultanate of Brunei Darussalam. Borneo is the
third largest island in the world and the largest landmass in the Sundaic area. The island lies in a region
(between latitudes 7°N and 4°S) of frequent rainfall and high temperatures throughout the year, which
are ideal conditions for plant growth (MacKinnon et al. 1996). The pattern of rainfall is linked to the
“dry” southeast monsoon from May to October and the “wet” northwest monsoon from November to
April. The area of Kalimantan covers approximately 540,000 km? and is depicted in Figure 3-9.

Kalimantan z
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Figure 3-9. ALOS PALSAR false color composite of Kalimantan: red — HV, green — HH, red
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The ecosystem of Kalimantan includes different forest types: mangrove forests, peat swamp and
freshwater swamp forests, the most extensive extent of heath forests in Southeast Asia, lowland
dipterocarp forests, ironwood forests, forests on limestone and ultrabasic soils, hill dipterocarp forests
and various montane formations (MacKinnon et al., 1996). Peat swamp forest has developed over a
large sedimentary plain that extends south to the Java Sea. Extensive coastal swamps have developed
over this plain, mainly during the past 10,000 years, creating massive peat domes, and elevating the
land surface. Peatland is the most significant carbon store and sink in this area. Lowland dipterocarp
and peat swamp forests can usually be well discriminated in the field by means of species composition,
average tree height, tree crown diameter, and canopy closure, with lowland dipterocarp forest being
more diverse with taller trees and more closed canopy (MacKinnon et al., 1996). Different stages of
forest degradation are present in Kalimantan, resulting from present and former logging activities
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(over the last three decades) and fire events facilitated in anthropogenic degraded forests during
strong El Nifio events.

Three training sites with available AGB reference data were selected across Kalimantan in order to
calibrate the regional AGB models:

e Central Kalimantan: This training area is located in the Pulang Pisau and Kapuas districts, in the
heart of Central Kalimantan and is characterized by peatlands up to 16 m deep (Vepakomma
etal., 2011). The most severe impact was caused by the Ex-MRP (Mega Rice Project), conceived
by the Indonesian government in 1995 to convert an uncultivated area of 988,568 ha through
the construction of about 6,000 km of drainage and irrigation channels between 1996 and
1997. By the time the MRP was abandoned, in 1999, more than 0.5 Mha of peatlands were
deforested, 4,600 km of drainage canals were constructed to drain the peatlands, and an
estimated 60,000 migrants moved to the area to live and work in the project area (Moeliono
et al., 2009). These conditions, combined with a severe El Nifio event in 1997, resulted in
extensive forest and peatland fires that burned around 5.2 million ha, mostly on peat (Siegert
et al., 2001). According to Page et al. (2002), Indonesia emitted between 0.81 and 2.57 Gt of
carbon in 1997 as a result of burning peat and vegetation. lllegal logging activities in Central
Kalimantan usually create only small scale impacts on the forest canopy. Timber trees are
felled, cut into manageable lengths and then dragged along narrow skid trails (mostly about 3
to 10 meters wide) to the nearest river, or are floated through small canals (0.5 to 1.5 meters
wide), which have been cut into the peat layer, to larger channels for further downriver
transportation. This procedure causes much less visible impact on the forest than industrial
logging operations, which create extensive infrastructure. After removing commercially
valuable timber through industrial logging in the 1990s and recent illegal logging, human
induced fires are observed spreading from drainage channels that are initiated for land
speculation (Franke et al., 2012).

e West Kalimantan: This training site is located in the district of Kapuas Hulu in the central part
of Borneo and belongs to the West-Kalimantan province. The district covers a total area of
3 million ha. The major part of the district lies in a basin consisting of a complex pattern of peat
domes, lakes, freshwater wetlands and the floodplain of the Kapuas, Borneo’s largest river.
These lowlands have an elevation between 25 m a.s.l. and 100 m a.s.l. and have generally flat
topography, with the exception of some rocky outcrops. In the east and south-east of the
district the terrain becomes more rugged, and the landscape gives way to
the Miller mountains (south-east) and Kapuas Hulu mountain range (north-east). There are
several threats that cause deforestation or forest degradation, such as large-scale estate
plantations, small holder agriculture, selective logging and mining (Potter and Lee, 1998).

e East Kalimantan: This training area is located in the districts of Berau and Malinau in East
Kalimantan. Berau was relatively unaffected by the major fires of 1982-83 and 1997-98 and
75% of the area is still primary or secondary forest. Malinau is part of the Heart of Borneo, a
conservation agreement initiated by the World Wildlife Fund for Nature to protect 220,000
km? of forested region in Borneo, and covers a total area of 4 Mha. Terrestrial ecosystem
variation in both districts remains extremely high, including nearly all of the major ecosystem
types known for Borneo (Whitmore, 1984). Coastal regions are dominated by mangrove,
estuarine and mixed freshwater and peat swamp ecosystems. Further inland of these swamps,
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extensive areas of lowland mixed dipterocarp or hill dipterocarp forest are present (Whitmore,
1984).

3.3.2 Datasets

3.3.2.1 Inputdata
The regional map for Indonesia is based solely on SAR imagery due to the important advantage of
daylight and weather independence as the signal can penetrate through clouds, haze and smoke. This
is of special importance in the frequent cloudy tropical areas. Hence, multispectral imagery was not
taken into account.

Previous work on AGB estimation in the tropics show that X and C-band data has found up to present
only little application (Lu 2006). Pandey et al. (2010) found a correlation between C-band ENVISAT
ASAR backscatter and AGB up to 250 t/ha. Most AGB studies in tropical forests were conducted on the
basis of L-band SAR data (Hamdan et al. 2011; Mitchard et al. 2011; Ryan et al. 2012; Wijaya et al.
2009). Sarker et al. (2012) successfully predicted AGB in a subtropical forest on the basis of L-band
ALOS PALSAR texture. P-band backscatter has proven to allow more accurate AGB predictions than L-
band backscatter (Saatchi et al. 2011b). Based on these results and on data availability, this regional
AGB estimation will be based on C- and L-band SAR data.

L-band SAR

ALOS PALSAR data used in this study are 25 m resolution mosaics provided by the Kyoto & Carbon
Initiative which are openly available and free of charge. The original ALOS PALSAR FBD data with 12.5
spatial resolution were not available over the whole regional area due to data costs. AGB estimation
based on ALOS PALSAR mosaic data has already been successfully performed by Mermoz et al. (2014)
and Hamdan et al. (2015).

The mosaic covers almost all land areas and is available for the years 2007, 2008, 2009 and 2010. The
dataset is divided into tiles of 1 degree latitude-longitude geographical unit. The data were obtained
in HH and HV modes as normalized radar cross-section, y°. They are slope-corrected and ortho-rectified
to a ground spacing of 25 m using the 90-m SRTM (Shimada et al., 2014). For this study, all tiles covering
the area of Kalimantan were used. Acquisitions were during the dry period between June and
September. Although SAR is nominally weather-independent, SAR images show distortions due to
rainfall events. The 2007 mosaic will be used for the 2005 epoch and the 2009 mosaic will be used for
the 2010 epoch, as the year 2010 was very wet and the backscatter is influenced by the high moisture
content of the vegetation. The Kyoto & Carbon Initiative will also provide a 25 m mosaic of ALOS-2
PALSAR-2 data in HH and HV polarization which will be used for the 2015 epoch.

C-band SAR

The C-band (5.6 cm wavelength) SAR database consists of ENVISAT ASAR and Sentinel-1 data. The ASAR
instrument on ENVISAT, which was launched in March 2002, provides radar data in five modes of
operation with varying spatial and temporal resolution: Image mode (IM), Alternating Polarization
(AP), Wide swath (WS), global monitoring (GM) and Wave mode (WM). The IM mode has a spatial
resolution of 30 m and either VV or HH polarizations; AP mode has a spatial resolution of 30 m and
three possible mutual exclusive polarizations (HH/VV, HH/HV or VV/VH); and WS mode has a spatial
resolution of 150 m and either VV or HH polarizations. For the 2005 epoch, full coverage of the study
area can be obtained by 52 IM scenes acquired in VV polarization during the dry and wet season in
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2004 and 2005. Images acquired only during the dry season do not cover the whole study area but the
possible influence of flooded areas will be taken into consideration. If there is likely to be an influence
of moisture content or flooded areas, these images will be excluded from the analysis. The 2010
reference epoch is not fully covered by scenes acquired in one sensor mode and is therefore excluded
from the analysis.

Sentinel-1 is part of the EU/ESA Copernicus Programme and consists of a constellation of two satellites
providing C-band imagery. Sentinel-la was launched in April 2014 and data acquired in the
Interferometric Wide swath (IW) mode during the dry season in 2015 will be used for the 2015
reference epoch. This is the default acquisition mode over land, and gives a 250 km wide swath in VV
and VH polarizations with 10 m pixel spacing, a resolution of 20x22 m with 5x1 averaging and an ENL
of 4.9.

SRTM

The Digital Elevation model (DEM) from the Shuttle Radar Topography mission (SRTM) with a spatial
resolution of 30 m (and vertical accuracy of = 10 m) is used for topographic analyses: slope is used to
clean up the final AGB map, since extreme overestimation of biomass occurs in steep terrain.

Water body mask
ESRI World Water Bodies provides a base map layer for lakes, seas, oceans and large rivers and was
used for delineating water bodies within the regional site.

MODIS active fire data
MODIS hotspot data (MCD14DL) is used to detect thermal anomalies/active fires.

Urban areas
The ESA CCl land cover map provides 3 epoch series (200, 2005, 2010) of global land cover maps at
300 m spatial resolution. The land cover class urban areas was used to evaluate settlement areas.

3.3.2.2 Training data

AGB reference data were generated by relating forest inventory AGB data to LiDAR measurements,
taking advantage of LiDAR's ability to create accurate biomass predictions for an area within the SAR
images.

Deforestation between SAR and LiDAR acquisition dates was detected using MODIS hotspots, as fire is
the main reason for deforestation in this area. Areas of 1 km x 1 km centred on the hotspots were
excluded when selecting reference data.

AGB reference data were selected with a minimum distance of 75 m to the LiDAR outline as LiDAR
point density and therefore AGB estimation accuracy is lower at the edge of the dataset. Areas with
slope exceeding 5% and inside the ALOS mask (containing areas of layover and shadow) were also
excluded from the analysis.

The AGB reference data for each epoch was randomly split into data used for training (70%), validation
(15%) and accuracy assessment (15%) of the SAR-AGB models.
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Field inventory data

Existing field inventories were conducted within different projects. In general, the sample plots in
forests had the same circular extent consisting of nested subplots arranged in concentric circles (see
Figure 3-10). Nested sample plots are recommended in highly diverse tropical forests in order to get
information on both widely distributed large trees and on smaller but more densely distributed trees.

In regrowth areas, rectangular plots were used and all saplings and trees within the area were
recorded.

All Subplots
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Figure 3-10: Example of a nested plot consisting of three subplots. In each of these subplots trees with
different diameter at breast height (dbh) are measured.

Table 3-3 gives a detailed description of all forest inventories available for the regional AGB estimation
with respect to each epoch. The methodology and applied allometric models vary slightly for the
different study sites since they were processed as part of different research projects. Although the
different methodology and applied allometric models might have an influence on AGB estimation, it is
assumed that they do not have a substantial influence as it is not possible to re-process the plot due
to lack of access to raw data.
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Table 3-3. Detailed description of all available field inventory plots for the regional AGB estimation.

Acquisition  Reference Number

Site Plot form Plot design AGB allometry
Date epoch of plots
Pulang Pisau & 2008 2005 64 Nested Degraded forest: AGB=exp(-2.977+In(p*D?*h)
Kapuas circular
Subplot 01: DBH >20 cm; 20 m radius
(Central plots
Kalimantan) Subplot 02: DBH >10 cm and <20 cm; 14 mradius ~ After Chave et al. (2005) using wood specific
densities applied to degraded and intact forest
Subplot 03: DBH =5 cm and <10 cm; 4 m radius
plots.
Intact forest:
Subplot 01: DBH =50 cm; 20 m radius
Subplot 02: DBH 220 cm and <50 cm; 14 m radius
Subplot 03: DBH =5 cm and <20 cm; 4 m radius
Pulang Pisau & 2010-2011 2010 41 Nested Degraded forest: AGB=exp(-2.977+In(p*D?*h)
Kapuas circular
Subplot 01: DBH >20 ¢cm; 20 m radius
(Central plots
Kalimantan) Subplot 02: DBH >10 cm and <20 cm; 14 mradius ~ After Chave et al. (2005) using wood specific

Subplot 03: DBH =5 cm and <10 cm; 4 m radius
Intact forest:

Subplot 01: DBH 250 cm; 20 m radius

Subplot 02: DBH 220 cm and <50 cm; 14 m radius

Subplot 03: DBH =5 cm and <20 cm; 4 m radius

densities a pplied to degraded and intact forest
plots.
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X Acquisition  Reference Number i
Site Plot form Plot design AGB allometry
Date epoch of plots
Pulang Pisau & 2010-2011 2010 46 Rectangular Regrowing forest: If DBH<5 cm and h<1.3 m after Hughes et al.

Kapuas
(Central
Kalimantan)

plots

Rectangular plots of 20 m x 50 m: record of all
saplings and trees

(1999)

AGB=10"6*exp(4.7472+1.0915*In(D?))

If DBH<5 cm and h>1.3 m after Hughes et al.
(1999)

AGB=1.14*105*exp(4.9375+1.0583*In(D?)

If DBH<5 cm and h>1.3 m after Hughes et al.
(1999)

AGB=exp(-2.977+In(p*D?*h)

All allometries were used with wood specific
densities
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Table 3-3. Cont.
. Acquisition  Reference Number i
Site Plot form Plot design AGB allometry
Date epoch of plots
Berau  (East 2012-2013 2010 78 Nested Subplot 01: DBH > 50 cm; 35 m radius AGB=p*exp(-1.499+2.148*In(D)+0.207*(In(D))?-
Kalimantan) circular ) 0.0281*(In(D))3)
plots Subplot 02: DBH > 20 cm and <50 cm; 25 m radius
Subplot 03: DBH > 10 cm and <20 cm; 10m radius
After Chave et al. (2005) using wood specific
Subplot 04: DBH = 2 cm and <10 cm; 3 m radius densiti
ensities
Kapuas Hulu 2009-2011 2010 82 Nested Subplot 01: DBH >30cm; 10 m x 10 m AGB=p*exp(-1.499+2.148*In(D)+0.207*(In(D))?*-
(West rectangular 0.0281*(In(D))3
. Subplot 02: DBH 215 cmand £30cm; 20 mx 20 m
Kalimantan) plots
Subplot 03: DBH 25 cm and £15cm; 20 m x 50 m
After Chave et al. (2005) using an average wood
density for Asian tropical forests of 0.57 mg-m™3
(Brown, 1997)
Pulang Pisau & 2013-2014 2015 94 Nested Subplot 01: DBH =30 cm; 16 m radius AGB=p*exp(-1.499+2.148*In(D)+0.207*(In(D))*-
Kapuas circular ) 0.0281*(In(D))3)
Subplot 02: DBH 217 cm and <30 cm; 8 m radius
(Central plots
Kalimantan) Subplot 03: DBH 25 cm and <17 cm; 4 m radius

After Chave et al. (2005) using wood specific
densities
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Table 3-3. Cont.
. Acquisition  Reference Number i
Site Plot form Plot design AGB allometry
Date epoch of plots
Malinau (East 2015 2015 24 Nested Subplot 01: DBH =50 cm; 30 m radius AGB=p*exp(-1.499+2.148*In(D)+0.207*(In(D))?-
Kalimantan) circular ) 0.0281*(In(D))3
plots Subplot 02: DBH 220 cm and <50 cm; 20 m radius
Subplot 03: DBH 210 cm and <20 cm; 10 m radius
bol gi After Chave et al. (2005) using an average wood
Subplot 04: DBH <10 cm; 3 m radius density for Asian tropical forests of 0.57 mg-m™3
(Brown, 1997)
Kapuas Hulu 2014 2015 44 Nested Subplot 01: DBH =50 cm; 30 m radius AGB=p*exp(-1.499+2.148*In(D)+0.207*(In(D))?*-
(West circular 0.0281*(In(D))3
. Subplot 02: DBH 220 cm and <50 cm; 20 m radius
Kalimantan) plots
Subplot 03: DBH 210 cm and <20 c¢cm; 10 m radius
) After Chave et al. (2005) using an average wood
Subplot 04: DBH >2 cm and <10 cm; 3 m radius

density for Asian tropical forests of 0.57 mg-m™3
(Brown, 1997)
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Reference biomass data derived from airborne LiDAR

Airborne LiDAR (Light Detection and Ranging) measurements were acquired during the dry season
(May-October) at an altitude of approximately 800 m a.s.l. This flight altitude allows a transect width
with two overflights of approx. 507 — 563 m with 35% overlap of the two flight strips. Fehler!
Verweisquelle konnte nicht gefunden werden.-4 provides an overview of the LiDAR data.

Table 3-4. Acquisition dates and characteristics of the airborne LiDAR data.

Site Acquisition Date  Reference epoch Area

Pulang Pisau & Kapuas (Central Kalimantan) 2007 2005 300 km?
Pulang Pisau & Kapuas (Central Kalimantan) 2011 2010 7000 km?
Malinau (East Kalimantan) 2012 2010 240 km?
Berau (East Kalimantan) 2012 2010 340 km?
Kapuas Hulu (West Kalimantan) 2012 2010 420 km?

Previous studies revealed that LiDAR point cloud height metrics like Quadratic Mean Canopy Height
(QMCH) or Centroid Height (CH) are appropriate parameters to estimate AGB in tropical forests by
taking also the point distribution over the different vegetation layers into account (Ballhorn et al.,
2011; Kronseder et al., 2012; Jubanski et al.,, 2013). LiDAR height histograms were calculated by
normalising all points within a grid of 30 m (similar to the size of the largest nest of the field inventory
plots) to the ground using the DTM as reference, i.e. the height of each LiDAR return was calculated
relative to the DTM. The number of points within each 0.5 m interval was stored as a histogram. The
first (lowest) interval was considered as the ground return and excluded from further processing. The
QMCH and the CH of the height histogram were calculated by weighting each 0.5 m height interval by
the fraction of points stored within this interval. The QMCH and CH were related to AGB estimated by
field inventory using regression models. Jubanski et al. (2013) showed that the accuracy of AGB
estimations derived from LiDAR height histograms increased with higher point densities, so point
density was also included in the regression as an input variable.

The LiDAR AGB regression model combined a power function in the lower biomass range, up to certain
threshold QMCHo (the example here uses QMCH but the same would be done with CH) and a linear
function in the higher biomass range. The QMCHo threshold was determined by increasing the value
of QMCHp in steps of 0.001 m and identifying the lowest RMSE. The linear function is the tangent
through QMCH, and was calculated using the first derivative of the power function (Eq. 3-12):

a-QMCHP if QMCH < QMCH,(

AGB = _
(a-b-QMCH"™) (QMCH — QMCHo) + a- QMCHE  if QMCH > QMCH,€

(Eq.3-12)

where a and b are coefficients (the same can be done using CH). More details are provided in Englhart
et al. (2013). The CH was used for AGB estimation in Central Kalimantan and Malinau while the QMCH
was used in Berau and Kapuas Hulu. The different LIiDAR AGB regression models are depicted in Figure
3-11.
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The AGB reference data were generated by relating forest inventory AGB data to LIDAR measurements,
taking advantage of LiDAR's ability to create accurate biomass predictions for an area within the SAR
images. This upscaling from point data (field inventory) to transects (LIDAR) was chosen to provide a
more powerful basis for AGB model calibration and validation from SAR backscatter data.

Deforestation between SAR and LiDAR acquisitions was detected using MODIS hotspots, as fire is the
main reason for deforestation in this area. Areas of 1 km x 1 km centred on the hotspots were excluded

when selecting reference data.
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Figure 3-11: LiDAR AGB regression models based on field inventory data and the Quadratic Mean
Canopy Height and Centroid point cloud height metrics.

Spaceborne LiDAR data (ICESAT GLAS)
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ICESAT GLAS data could not be used for AGB estimation in this study as intended in the proposal since
there was not enough overlap between ICESAT GLAS footprints and AGB reference data (field plots or
airborne LiDAR).

3.3.2.3 \Validation data
The AGB reference data for each epoch were randomly split into data used for training (70%),
validation (15%) and accuracy assessment (15%) of the SAR-AGB models.

3.3.2.4 Data used for accuracy assessment
The AGB reference data for each epoch were randomly split into data used for training (70%),
validation (15%), and accuracy assessment of the SAR-AGB models (15%).

3.3.3 Methods

3.3.3.1 Pre-processing of SAR data

The preprocessing of SAR imagery included co-registration, radiometric calibration, geometric
correction and speckle filtering.

The multi-temporal SAR imagery was co-registered using the ALOS PALSAR mosaic of 2010 as reference
and was processed using 7° backscatter coefficients. A workflow showing the steps in the pre-
processing based on the example of ALOS PALSAR 25 m mosaic is shown in Figure -12.

To reduce speckle, a multi-channel speckle filter with a 7x7 moving window was applied (Quegan et
al., 2000). This generates new images with reduced speckle from multi-temporal and multi-polarised
images. It is based on the following relation:

J (X, y) = with  k=1...,N (Eq. 3-13)

(L) & 1(xy)
N 2 (L)

where, at position (x,y), Jk (X, y) is the radar intensity of output image k, |i (X, y) is the radar intensity

of input image i, < |i(X, y)> is the local average intensity of input image j and N is the number of

images.

In addition to the backscatter images, ratio images were prepared after speckle filtering using the
following equations (depending on available polarizations) in order to examine the potential for AGB
estimation (Thapa et al. 2015; Hamdan et al., 2014):

HV

*  Rym :m
VH

i vhw :W

e SQRT,,=vHH-HV
e SQRT,, =VVH-W

where HH, HV, VV and VH indicate the polarizations of the y° backscattering coefficients.
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Figure 3-12: Workflow of SAR pre-processing using the example of ALOS PALSAR 25 m mosaic.

In order to yield more information on forest structure and improve the model accuracy, texture
measures and their relationship to AGB were evaluated. Texture describes properties of objects, such

as smoothness, regularity, and tonal variation in a SAR image (Thapa et al.,

2015). Using the freely

available Orfeo toolbox (https://www.orfeo-toolbox.org), textures were calculated based on different

ratios and on the single polarized images, including simple and higher order Haralick textures over a

sliding window with user defined radius:

p(.j)

j2

1 .o .
w2 p(L)) *j*
— ;TP )
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where p(i, j) is the element in cell (i, j) of a
runs and n, is the total number of pixels (Har

(Eg. 3-14 to 3-20)

normalized Run Length Matrix, n,is the total number of
alick et al. 1973).
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Due to varying resolution, all input data (filtered backscatter, ratios and textures) were averaged to a
pixel spacing of 100 m, which is consistent with the pixel spacing of the final AGB map.

3.3.3.2  Biomass estimation algorithms

The regional AGB estimation map is based on full coverage C- and L-band SAR data or only L-band data
if full coverage by C-band data is not available. Regression analysis is a common way to develop AGB
estimation models using SAR data (Lu 2006) and this method was chosen to develop this regional AGB
estimation model.

In previous work, we have compared different methodologies to estimate AGB at this regional site and
found that multivariate linear regression models are superior to support vector regression and artificial
neural network models in terms of AGB variability and saturation (Englhart et al. 2012). Therefore, we
decided to use regression modelling as it is a very common approach in the field of AGB estimation in
the tropics using SAR data (Thapa et al. 2015, Mermoz et al. 2015, Mitchard et al. 2009.

As a first step, the plots showing the relationship between input parameters such as backscatter, ratios
or textures and AGB were assessed. After analysing the relationship between AGB and input variables,
a multiple linear regression model was applied using the linearized input variables.

AGB =a, -var,+a, -var,+...+a, -var,+ ¢ (Eq. 3-21)

where a3, a,, ..., a, are coefficients and vary, var,, ..., var, are linearized input variables (e.g. exponential
values of input data), such as y°, ratios or textures.

3.3.3.3 Training methods

To establish the relationship between AGB and the independent variables (SAR derived parameters),
a multiple linear regression approach is adopted. Although complexity increases, combining multiple
variables often provides better AGB estimates than using single variables. However, multiple
regressions are often affected by multi-colinearity and overfitting among the independent variables.
In order to identify a model with the greatest explanatory power, stepwise multiple linear regression
was performed to automate the selection of the best explanatory variables.

In addition, the p-value of each variable was used to filter out those variables that do not contribute
to the model; this approach is often exploited in regression-based AGB modelling (Asner et al., 2010;
Mitchard et al., 2011; Thapa et al., 2015). The Variable Inflation Factor (VIF) was calculated for the
selected variables and models with higher VIF variables were avoided. Higher r?, lower root mean
square error (RMSE), the significance of p-value < 0.05 for the independent variables and the VIF were
incorporated into the model selection and development process.

3.3.3.4 Strengths, limitations and weaknesses of the developed approach

The strength of the developed approach for epoch 2010 is that biomass variability due to different
degradation stages in the forest is clearly visibly as indicated in Figure 3-13. AGB variability due to
different disturbances are clearly visible in contrast to non-disturbed area or clearcuts.
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Figure 3-13: Comparison of Landsat image acquired on 10.02.2010 (left) and regional AGB map (right)
showing AGB loss due to different degradation stages.

The comparison of the developed regional AGB map, other pan-tropical AGB maps and LiDAR-derived
AGB estimation depicted in Figure 1-14 show that the developed model correctly estimates the
variability in the lower and higher biomass ranges.

One of the limitations of this approach is that in general, SAR-based AGB retrieval suffers from
saturation of the backscatter signal in the higher biomass range. The saturation level of L-band SAR
was found in previous studies between 50 t/ha and 250 t/ha, and HV data gave higher saturation levels
than HH data (Hamdan et al. 2011; Hamdan et al. 2015; Mitchard et al. 2012; Mitchard et al. 2009;
Saatchi et al. 2007; Saatchi et al. 2011b, Englhart et al. 2011). Due to the use of texture, the saturation
level of the 2010 model, which is only based on ALOS PALSAR 25 m mosaic data, is approximately at
250 t/ha. In addition, AGB estimations in steep terrain (with slope > 10°) and settlement areas are not
reliable and have been flagged in the quality assurance (QA) layer.
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Regional AGB map 2010 Baccini et al. 2012
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Figure 1-14 Comparison of the developed regional AGB map, other pan-tropical AGB maps from Baccini

et al. 2012 and Saatchi et al. 2011 as well as airborne LiDAR AGB estimations developed after the
description provided in 3.3.2.2.

3.3.3.5 Methods to assign accuracies in the uncertainty map

The total uncertainty at pixel level is composed of different sources of error which are assumed to be

random and independent. These are propagated using the following equation proposed by Saatchi et
al. (2011):

— (2 2 2 2 1
€a6B = (Smeasurement + ’gallometry + ’gsampling + gprediction) /2 (Eq- 3‘22)

Emeasurement. The measurement error of tree level parameters such as diameter and tree height
averaged at plot level (Chave et al., 2004). By re-measuring trees several times, the measurement error
can be assessed. Similar to Mitchard et al. (2011), a measurement error of 10% is assumed.

Eallometry: The error in estimating AGB using allometric equations. Chave et al. (2005) found an error

on the estimation of a tree’s biomass was approximately +5%. As we mainly used this allometry, an
error of 5% is assumed here.

Esampling size® This originates from the variability of AGB within the pixel area and depends on the size

of the plots used to upscale the AGB measurements to the pixel level. According to Saatchi et al. (2011)
and Chave et al. (2003), a sampling error of 20% is assumed.
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Eprediction: T1he prediction error includes both the sampling error associated with the

representativeness of the training data of the actual spatial distribution of AGB and the model
predictions.

3.3.3.6 Methods to test the accuracy of the measurements

The validation dataset is used for accuracy assessment based on the recommendations from the
GlobBiomass Validation protocol (D5 document).

3.3.4 Products

The final products for each epoch (2005, 2010 and 2015) include an AGB map, a quality assurance layer
and an uncertainty map with a spatial resolution of 100 m. Current pan-tropical maps (Saatchi et al.,
2011, Baccini et al., 2012, Avitable et al. 2016) have a coarser spatial resolution (500 m and 1000 m,
respectively).

3.3.5 Modifications for the 2005 and 2015 epochs

Methods
There are no changes in the methods for 2005 and 2015 AGB estimation when compared to the 2010
epoch.

Data
As described above, the following datasets will be used for the different epochs.

Input data
2005 2010 2015
L-band SAR
ALOS PALSAR mosaic 25m X X
ALOS-2 PALSAR-2 mosaic 25m X
C-band SAR
Envisat ASAR X
Sentinel-1 X
Training data
2005 2010 2015
Field inventory data X X X
Airborne LiDAR data X X
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3.4 Regional map: Mexico

3.4.1 General description of the region

Mexico’s total land area is estimated at approximately 1.97 million km?, of which 43% is covered by
forest and other wooded land. The country borders with United States, Belize and Guatemala. The
country’s geology, topography, and climate are extremely varied, presenting different kinds of forest
ecosystems. It presents broad mountains ranges, coastal lowlands, and large plateaus. The large
climate gradient from North to South generates a wide spectrum of complex climate conditions. The
country is divided by the Tropic of Cancer into sub-tropical north and tropical south. Mexico is also one
of the countries with the highest biodiversity in the world. This biodiversity is mostly concentrated in
the tropical forest areas of the country.

The north of the country is dominated by deserts, coniferous and broadleaved forests, while the centre
and south are dominated by a diverse mix of coniferous forest, broadleaved forest, mixed forest, cloud
forest in high elevations, savannahs, wetlands, and evergreen, deciduous and semi-deciduous tropical
forests (Figure 3-15. Therefore the seasonality of the remote sensing observations will be a critical
issue.

2%

B Sub-tropical - Temperate forest
Humid tropical forest

® Dry tropical forest

7% Mangrove / Riparian / Peten Forest

16% | ® Shrub Vegetation & Savannah

Other vegetated areas
8%
™ Grassland or Pasture
W Cropland

B Non-vegetated

28%

Figure 3-15 Land Cover and Vegetation types in Mexico (% total area)

Two sites covering the most representative biomes in Mexico were selected (Fig. 3-16). The first is the
Yucatan peninsula, which comprises a mix of tropical moist and tropical dry forest biomes, as well as
the mangrove biome. The second proposed site is central Mexico which covers subtropical coniferous
forest, tropical dry forest, tropical moist forest and xeric shrubland biomes, and includes forest with
some of the highest biomass per ha in Mexico (i.e. Oyamel forest). The total area covered by both sites
exceeds 300.000 km?.
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Figure 3-16. Biomes in Mexico. Squares correspond to study sites.

Few assessments have been carried out to estimate the carbon stock in Mexico. The main assessments,
based on forest inventory data, were carried out by Comision Nacional Forestal (CONAFOR) to provide
information for the FAO Forest Resource Assessments. The most recent assessments covering the
whole country are the tropical carbon maps for 2000 and 2005 by Saatchi, Harris et al. (2011) and
Baccini, Goetz et al. (2012) respectively. Cartus, Kellndorfer et al. (2014) also produced a map of forest
above-ground carbon stocks for 2005 for Mexico. These studies followed different approaches and
display substantial differences in the amount and distribution of AGB stocks in Mexico (Table 3-5).

3.4.2 Datasets

3.4.2.1 Input data (used to drive the biomass algorithm)

Remote sensing imagery sensitive to forest AGB from different satellite sensors (optical and SAR) will
be used (Table 3-6). The core datasets will be ALOS PALSAR and Landsat. Freely available ALOS PALSAR
(and ALOS-2 PALSAR-2) mosaics of y° at 25 m pixel spacing in HH and HV polarizations were acquired
from JAXA (http://www.eorc.jaxa.jp/ ALOS/en/palsar_fnf/fnf_index.htm) for all available years (2007-
2011 & 2015-2016). Landsat Surface Reflectance (SR) imagery computed by the LEDAPS method
(http://ledaps.nascom.nasa.gov/) (Masek, Vermote et al. 2006) was used to generate multi-temporal
composites. Google Earth Engine (GEE) cloud computing (https://earthengine.google.org/) is used for
this task. Landsat 7 ETM+ and Landsat 8 OLI imagery are used to generate these composites. Landsat
Percent Tree Cover (PTC) and forest cover loss layers (Hansen, Potapov et al. 2013) were acquired from
University of Maryland repository (https://earthenginepartners.appspot.com/science-2013-global-
forest/download_v1.3.html) This dataset will be used as additional input. Additionally, freely available
30 m spatial resolution elevation data from the Shuttle Radar Topography Mission (void-filled SRTM
Plus= NASA V3) will be obtained from the USGS Earth Explorer repository
(http://earthexplorer.usgs.gov/). Sentinel-1 dual polarisation Interferometric Wide (IW) swath mode
imagery (5mx20m pixel spacing) acquired from the Sentinel-1 scientific data hub
(https://scihub.esa.int/) will be evaluated for the 2015 epoch map, and used if it contributes to
improve the estimations.
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Table 3-5. Comparison between previous assessments and proposed map for Mexico.

Total
tial M RMSE pixel
Assessment Period  Method Datasets >pa '? Spatial Outputs Carbon ean Can_'lb on > p|xe_1
Resolution (tCha') level (t C ha™)
(Pg C)
2000 1.75 26.24
Forest
FAO (2010) 2005 INFyS, LUV N/A N/A 1.72 26.22 N/A
Inventory
2010 1.68 25.93
GLAS, MODIS
hi, Harri ! AGB -
Ziztlc (;'o li;r's 2000  MaxEnt (1000m), QSCAT 1000 m Uncsrta?:]atp f;a 2.24 32.94 £27.3%")
: (2.25km), SRTM (90m) y map
Cartus INFyS, LUV, Landsat
! Random PTC (30m), ALOS
+
Kellndorfer et 2005 Forest PALSAR (30m), SRTM 30m AGB map 1.53 23.61 +14.4
al. (2014)
(90m)
Baccini, Goetz Random GLAS, MODIS, SRTM
’ ) ) (**) +
etal. (2012) 2005 Forest (500m) 500 m AGB map 1.95 46.35 +25.0
INFyS, Landsat
composites (SR)
2005
:/:z;(zzed (30m), ALOS PALSAR AGB & Uncertainty
) 2010  MaxEnt (25m), SRTM (30m) 25m maps, AGB-change =)
GlobBiomass
(30m), Sentinel-1 (5 m
x20 m)

) Relative error; ") Country half covered; ") Expected better than existing maps
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Several spatial products classifying Mexico are available free of cost at medium and coarse resolutions
(WWF biomes and eco-regions, GlobCover, MODIS Land Cover, etc.). The different series (lll, IV, & V)
from the Land Cover and Vegetation map from the Mexican National Institute for Statistics and
Geography (INEGI), developed using Landsat and Spot imagery, were also acquired (INEGI 2009). The
map provides land use and vegetation types at a scale of 1:250000 and will be used to mask out urban
areas from the study sites.

Table 3-6: Remote sensing imagery for the regional biomass maps in Mexico.
SPATIAL Number

DATASET RESOLUTION of Looks 2005 2010 2015
ALOS PALSAR 25m 16 X! X

ALOS-2 PALSAR-2 25m 169 X
Landsat PTC® 30m N/A X X X
Landsat 7 ETM+ SR 30m N/A X X

Landsat 8 OLI SR 30m N/A X
SRTM Plus (NASA Vv3)¥ 30m N/A X X X
Sentinel-1 Dual S mx20m 5x1 (4.9 «
Polarisation IW Mode ENL)

) Data from 2007. ? Assuming the same processing chain used in the ALOS PALSAR mosaics. ) PTC
updated using the loss layer. ¥ Shuttle Radar Topography Mission void-filled elevation data for the
year 2000. As it is assumed that topography remains constant, the same dataset is used for all epochs.

3.4.2.2 Training data

The Mexican National Forest and Soil Inventory (INFyS) of the Comision Nacional Forestal (CONAFOR)
is a rigorously designed and extensive ground-based national forest inventory that provides accurate
and current information on the size, spatial distribution and condition of forest resources (SEMARNAT
2004). This information is used to support the development of national policies for sustainable
development and to promote forestry sector activities. The average forest AGB for the country is
estimated, based on the INFyS dataset, as approximately 53 t hat. Maximum AGB values recorded in
this dataset are as high as 400 t hal, but very few plots have values above 200 t ha’. (Figure 3-17):
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Figure 3-17 Histogram of AGB distribution across the whole country based on the Mexican national
forest Inventory dataset (INFyS).

The ground plot dataset from INFyS contains data from 17,171 cluster plots each comprising four
400 m? (0.04 ha) rectangular (tropical forest) or circular (other forest) sub-plots representing a circular
area of 56.42 m radius (1 ha) systematically located across forested areas in Mexico for the period
2004-2012 (Figure 3-18). A total area of 0.16 ha is sampled at each 1 ha plot. The algorithm is trained
using the average value of the pixels within the boundaries of the INFyS ground plot. Edge pixels that
intersect the outer boundaries of the plots will be excluded. Only plots with 4 sub-plots are used.
Exponential models are fitted between AGB INFyS values and the EO predictors, removing plots with
residuals exceeding twice the residual standard deviation (Cartus, Kellndorfer et al. 2014). In our case
around 4% of the plots were excluded: 225 plots in total out of more than 5000. By class: 144 (class O-
50t/ha), 46 (class 50-100), and 35 (class > 100 t/ha). Plots in areas with slopes > 25% are also excluded.
The maps are trained using the plot data for the whole region of interest.

25 m pixel

30m pixel

11.28m

90m pixel

100 m pixel

Figure 3-18 left) Mexican INFyS sample plot consisting of 1 ha primary unit and four 400 m? sub-units
(0.16 ha sampled area); right) Different pixels sizes at the same scale as the INFyS plot (25 m, 30 m,
90 m, and 100 m).
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The sampling distance between centres of the plots is 5 x5 km in forest areas and mangroves, and
10 x 10 km in dry tropical forest and semi-arid vegetation.

3.4.2.3 \Validation data

An independent validation dataset was generated by setting aside 10-30% of the INFyS dataset after
stratifying the data into major biomass classes. This dataset is not used for training purposes.

3.4.2.4 Data used to quantify accuracy
The AGB probability distribution generated from the MaxEnt algorithm and ancillary data are used to
quantify the uncertainty based on the error propagation approach (see Methods section).

3.4.2.5 Data used for accuracy assessment
The independent INFyS validation data are used for accuracy assessment.

3.4.3 Methods

3.43.1 Pre-processing of data

A collection of USGS Landsat Surface Reflectance imagery computed by the LEDAPS method (Masek,
Vermote et al. 2006) is accessible via GEE. Multi-temporal 50 percentile composites are generated for
the study areas for each epoch. For the 2010 epoch, scenes from the period 2010+1 are used. The
Landsat QA layers are used to exclude pixels with cloud cover, snow and shadow.

K&C ALOS 25m mosaics include a standard SAR pre-processing as explained in Shimada, Itoh et al.
(2014). This involves calibration, multi-looking (output of 16 looks), projection, ortho-rectification and
slope correction using SRTM DEM. A destriping process (Shimada and Isoguchi 2002) is also applied to
equalize the intensity differences between neighbouring strips. The differences between strips were
attributed largely to seasonal and daily differences in surface moisture conditions. If significant effects
are still encountered in a strip of the study area, substitution of the strip for one from another period
and histogram matching of new strip with neighbouring strips will be attempted. A multichannel filter
(Quegan and Yu 2001) is applied using multi-temporal data from 2007, 2008, 2009, and 2010 to reduce
speckle. After testing several moving window sizes (i.e. 3x3, 5x5, 7x7, 9x9, 11x11) a 7x7 window was
selected as optimal. At this point, the level of speckle was considered acceptable, as no increase in
window size or additional spatial filtering showed further improvement.

Landsat PTC product (Hansen, Potapov et al. 2013) corresponds to the year 2000. The forest cover loss
layer included in the product indicating the annual loss of tree cover from 2000-2015 (pixels that
become 0% tree cover) was used to genera PTC products for 2005, 2010, and 2015. This approach
however assumes no forest cover gain over the study area.

3.4.3.2 Biomass estimation algorithms

A total of 339 biomass allometric equations (http://www.mrv.mx/index.php/en/mrv-m-3/work-
areas/allometric-modells) and 214 species-specific wood densities were used by CONAFOR (CONAFOR,
2012) to estimate tree-level AGB following a protocol for allometric model selection which prioritises
the use of species-specific models and wood densities within their diameter range of applicability. If
more than one equation is available the equation with highest R? or regional (closest spatial location)
is selected. If no species-specific model is available, the same procedure is followed at higher levels
(genus and forest type). Due to the lack of species- or genus-specific allometries for all tree species,
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generalized models are used (Chave et al., 2005, Brown, 1997) for approximately half of the plots in
the INFyS database (Cartus et al., 2014). Most plots have been measured twice during the period 2004-
2012, having 2 estimations of AGB per plot. The dataset includes information on forest parameters
such as AGB, tree density, crown cover, basal area, mean canopy height and forest types.

3.4.3.3 Training methods

The MaxEnt algorithm is a flexible and general purpose non-parametric algorithm that estimates the
probability distribution with the maximum entropy subject to the constraints established by the input
information (Phillips, Anderson et al. 2006). The MaxEnt algorithm is widely used for estimating species
distribution models (SDM), and has been recently used for classifying remote sensing data (Li and Guo
2010, Saatchi, Harris et al. 2011).

Jaynes (1957) postulated that a distribution which agrees with everything that is known and avoids
any assumptions not supported by a priori information should have maximum entropy. The maximum
entropy distribution is the most widespread or the closest to the uniform distribution. The unknown
probability distribution it is defined over the finite space X (here the values of the pixels in our study
area). The probability distribution 5t gives a non-negative probability r1(x) to each individual element of
the space X, and the sum of these probabilities equals 1. The approximation of 7 is the probability
distribution 7 whose entropy is defined as follows (Phillips, Anderson et al. 2006):

H#®) = - Z fi(x) In7e(x) , Where In is the natural algorithm Eq. 3-23
X€EX

The constraints on it are represented by a set of known real-valued functions or features (fs, ..., fn) on
the space X. The information assumed about T is the expectations (approximated by averages) of each
feature f; under m. This feature expectation is defined as:

Eq. 3-24

7lfi] = ) w() fi(x)

XEX

This can be approximated using a set of localities (x3, ..., x») independently drawn from X according to
7T, so that the empirical average is:

Eq. 3-25

1 m
wlf] =5 )il

ft[fj] is used as an estimate of 7[f;], and the objective is to find the approximate distribution of
maximum entropy which satisfies the constraint that each f; match the same empirical average under
1. Based on convex duality (Della Pietra, Della Pietra et al. 1997), this MaxEnt distribution is equal to
the maximum likelihood Gibbs distribution.

This regional study uses MaxEnt software 3.3.3k (Phillips, Dud et al. 2004, Phillips, Anderson et al.
2006). The features used to constrain the prior distribution represent the environmental variables
(here the EO datasets) or transformations of them. The types of functions that can be used by this
version of the algorithm are linear (the variable itself), product (pair-wise product combinations
between EO datasets), quadratic (square values of the EO datasets), threshold (functions that allow a
step in the fitted function), hinge (allowing a change in the gradient of the response), and categorical
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(for discrete EO datasets) (Phillips, Anderson et al. 2006, Elith, Phillips et al. 2011). The algorithm will
restrict by default the type of features used according to the number of occurrences available; if this
is greater than or equal to 80 all types of features can be used.

The algorithm can produce three different output formats for the model: raw, cumulative and logistic.
The logistic output format, which is a post-transformation of the raw output, was used in this regional
study. It aims to provide the closest estimate to the probability of the species presence (probability of
the class) for each pixel for the given EO datasets. This is scaled from 0 to 1 for the species, 0 being the
least suitable and 1 the most suitable. The main purpose of this transformation is to convert the
exponential model output of the algorithm into a logistic model, which will prevent the probabilities
exceeding the value 1, and makes the model suitable for use with new data or for extrapolation to new
areas.

MaxEnt presents similarities with other approaches such as generalized linear models (GLM),
generalized additive models (GAM), Bayesian approaches and neural networks (Phillips, Anderson et
al. 2006). It has been extensively used in biogeography, conservation biology and ecology in recent
years (e.g. Wollan, Bakkestuen et al. 2008, Cordellier and Pfenninger 2009, Kharouba, Algar et al. 2009,
Murray-Smith, Brummitt et al. 2009, Saatchi, Harris et al. 2011). The algorithm has been shown to
outperform well-established modelling methods such as GLM, GAM, Genetic Algorithm for Rule Set
Production (GARP), and BIOCLIM (Elith, Graham et al. 2006, Guisan, Zimmermann et al. 2007), and to
have similar performance to other machine learning algorithms (MLA) such as Random Forest
(Williams, Seo et al. 2009), One-Class Support Vector Machine (OC-SVM) (Li and Guo 2010), and
Boosted Decision Trees (BDT) (Elith, Graham et al. 2006, Guisan, Zimmermann et al. 2007).

The MaxEnt algorithm requires presence-only data as input, as it uses background environmental data
for the whole study area, which makes it advantageous in cases of limited training data, such as in AGB
studies. This means that the algorithm only needs the locations of the presence of the class (where the
species occurs and is observed) for calibration. MaxEnt outperforms other algorithms for small sample
sizes (Hernandez, Graham et al. 2006, Pearson, Raxworthy et al. 2007). Continuous and categorical EO
datasets, as well as interactions between them (features and functions), can be used as input. As the
MaxEnt probability distribution is mathematically well-defined, the relative importance of the EO
datasets can be easily analysed. The algorithm also includes a regularization feature to avoid model
over-fitting. This refers to the smoothing of the model by making it more regular, so the fitting of a too
complex model is avoided. L1-regularization (Tibshirani 1996) is a common approach in model
selection (though not used here without further assessment), and trades model fit against model
complexity (Elith, Phillips et al. 2011). Several studies (Hastie, Tibshirani et al. 2005, Wollan,
Bakkestuen et al. 2008, Elith, Phillips et al. 2011) have found that MaxEnt is reliable and performs well
in comparison to other machine learning algorithm, being more stable with correlated variables than,
for example, stepwise regression, so there is less need to remove correlated variables, or pre-process
covariates by using PCA and selecting dominant axes, which are more likely to degrade the results.

A recent study (Saatchi, Harris et al. 2011) demonstrated the possibility of modelling a continuous
biophysical parameter (AGB) by combining the probabilistic outputs generated from a MaxEnt
algorithm, and estimating the uncertainty of the estimation on a pixel-by-pixel basis. The study used 3
continental allometric models derived from ground data to relate GLAS-derived canopy height to AGB.
Saatchi, Harris et al. (2011) used the AGB estimated from GLAS footprints to calibrate a MaxEnt
algorithm, estimating for the first time AGB over the whole tropical region using EO datasets.
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Species distribution modelling usually confronts the problem of incomplete input information due to
the lack of data. AGB modelling faces the same challenge. Research studies and forest inventories
collect data in forested areas, but there are insufficient samples in inaccessible areas such as tropical
forests, especially for the highest AGB ranges. This represents a significant challenge for AGB mapping.
The Maximum Entropy algorithm is designed to work with incomplete sets of information which make
it very suitable for mapping forest parameters. The theoretical framework is shown in Figure 3-19.
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Figure 3-19 Theoretical framework and components of the MaxEnt AGB distribution model approach.
EO datasets used as predictors include optical, SAR and topographic datasets (Based on Rodriguez-
Veiga 2015).

AGB classes are assumed to behave as different “species” whose distributions are to be constrained
by the EO datasets. Henceforth the term “biomass distribution model” (BDM) is used instead of species
distribution model. Classifications of remote sensing imagery, as seen in Li and Guo (2010), will be
carried out for each AGB class to generate BDMs. As explained before, the probability calculated by
the MaxEnt algorithm is equal to the Gibbs probability which is proportional to the conditional
probability of the class (here AGB class) (Li and Guo 2010). Over numerous iterations for each AGB
class, the weights for combining the EO datasets are adjusted to maximise the average sample
likelihood (training gain), and to estimate the distribution over the whole extent of the region. The
higher the probability for the pixel, the more suitable the pixel is for representing the same
characteristics as the training pixels. In this study, EO datasets commonly used to map vegetation are
used to produce several BDMs covering the whole AGB range in the region, instead of the climatic
information commonly used in species distribution modelling. Therefore, the occurrences for each
AGB class can be represented as localities (x and y map coordinates) sharing the “geographical space”
with the EO datasets. The values of the EO datasets are extracted at the localities and used in the
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multidimensional “environmental space” to generate the BDMs (Figure 3-20). Therefore, the models
are pixel-based and do not include interaction between neighbouring pixels in calibration (Elith and
Leathwick 2009, Pearson 2010), but this is already inherent in the models through the spatial
autocorrelation of AGB reflected in the remote sensing imagery.

Probability (%)
E 3

* AGB Range A
* AGB Range B

AGB Range B

OPTICAL REFLECTANCE

SAR BACKSCATTER

Geographical l:> Environmental l:> Model Prediction
Geographical

Space Space Space

Figure 3-20 Connection between field observations (localities) from two different AGB ranges and
earth observation datasets in the geographical space (left), their relationship in the environmental
space (centre), and the model predictions (probabilities) in the geographical space (right) (Rodriguez-
Veiga 2015).

This approach allows the synergistic use of different types of sensors to scale up the AGB ground
measurements. It adapts the method of Saatchi, Harris et al. (2011), which uses the probability logistic
outputs from the MaxEnt algorithm to produce AGB and uncertainty maps. AGB occurrence data is
obtained from a rigorously designed and extensive ground-based forest inventory over the study area
(Section 3.4.3.4).

The approach assumes a finite geographic space X formed by a set of discrete grid-cells. A set of points
representing recorded values of AGB (occurrences) are the localities of the model (training dataset).
The implementation of this probabilistic method requires the set of AGB localities to be classified into
AGB classes. The minimum size of the training set to be used for an AGB class is set to be 100, following
the suggestion given in Saatchi, Harris et al. (2011), so as to make use of all the features (linear,
product, quadratic, threshold, and hinge) available for this version of the algorithm. The training
dataset is then divided into AGB classes covering specified intervals (e.g. 0-20t ha?, 21-40t ha?,
>200 t ha?), and each AGB class is assumed to behave as a different “species”. The EO layers contain
information correlated to AGB, such as optical reflectance, SAR backscatter and elevation (DEM). The
AGB classes are used in combination with the set of earth observation datasets defined in the space X
as inputs to MaxEnt. The aim is then to estimate the probabilistic distribution of each AGB class (BDM)
(Figure 3-21).
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Figure 3-21 Example of BDMs generated by the MaxEnt algorithm with pixels ranging from 0 (least
suitable) to 1 (most suitable) for each biomass range. White squares represent training data and
violet squares represent test data (Rodriguez-Veiga 2015).

Once the BDMs are generated for each AGB class, the continuous values of AGB for each pixel are
calculated as the weighted average AGB per pixel with the probabilities as weights:

____ YN PMAGB;

AGB = Eg. 3-26

N n
L‘=1Pi

where 4GB is the AGB prediction per pixel and P; is the probability estimated by MaxEnt for each AGB
range AGB; (average value within class i). The power of the probability n is used to weight the
predicted value towards the maximum probability closest to the true value when other probabilities
are small. This acts a bias reduction method. Previous studies such as Saatchi, Harris et al. (2011) used
n = 3. This study however observed better results with different n values. An optimization of the n
value to preserve the skewness in distributions for each pixel and produce the less biased estimates
was performed by cross-validation tests.

The AGB density in Mexico can reach above 200 t ha® (in a very few areas) which exceeds the
theoretical saturation level of each individual EO dataset. The combination of different datasets (SAR,
optical and topographical information) allows estimation of AGB beyond the individual theoretical
saturation level of each sensor as seen in previous studies (e.g. Saatchi, Harris et al. 2011, Mitchard,
Saatchi et al. 2012). The different types of data reflect different characteristics of the vegetation (e.g.
volume scattering, reflectance, percent tree cover, elevation, slope).

The Landsat PTC layer is used to limit the region which the MaxEnt algorithm uses for background
samples and generation of the probabilistic outputs (Elith, Phillips et al. 2011). Therefore, any land
area with a forest percent tree cover below 1% has a value of 0 by default. Pixels with permanent and
seasonal water are assigned a NoData value based on the JRC Global Surface Water (GSW) product
(Pekel, Cottam et al. 2016).
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The MaxEnt algorithm performance assessment is made by bootstrapping 25% of the training data.
Additionally, Jackknife analyses are performed to select the most suitable input variables to predict
AGB and forest distribution. The analyses are based on the Area Under the Receiver Operator Curve
(AUC) and Model Gain (Phillips, Dud et al. 2004, Phillips, Anderson et al. 2006), for both training and
test data.

The importance of each remote sensing layer is assessed by its relative contribution to the MaxEnt
model gain by sensor and per different AGB class. This is done using jackknife analyses with models
that omit one EO dataset each time and by models based on single EO datasets. For each remote
sensing layer the training data are also randomly permuted and the model is then re-evaluated. Any
drop in AUC is normalised to percentage values between 0 and 100%.

Weaknesses and Strengths of MaxEnt
MaxEnt has several possible strengths and weaknesses:

Strengths:

i The MaxEnt algorithm outperforms or has similar performance to well-established methods
such as GLM, GAP, GARP, BIOCLIM, Random Forest, OC-SVM, and BDT (Elith, Graham et al.
2006, Guisan, Zimmermann et al. 2007, Williams, Seo et al. 2009, Li and Guo 2010), especially
with limited training data (Hernandez, Graham et al. 2006, Pearson, Raxworthy et al. 2007).

ii.  The relative importance of the input variables can be easily calculated for the overall AGB
estimation or per biomass range.

iii. One of the main strengths of the approach is that it can generate pixel uncertainty based on
the probabilities estimated from the model fitting.

Weaknesses:

i Phillips, Anderson et al. (2006) noted that it is not a mature statistical method such as GLM.
However, other authors argued that MaxEnt is equivalent to logistic regression (Fithian and
Hastie 2013, Renner and Warton 2013), whose implementation is well understood.

ii. The training data has to be converted into discrete AGB ranges to generate several BDMs,
which are then combined to obtain continuous AGB estimations, so increasing the demand for
training data. This step is needed to allow calculation of pixel-level uncertainty. Saatchi, Harris
et al. (2011) suggested that at least 100 plots should be used as training data for each AGB
range. This restricts the use of Maxent in areas with lack of data. The model can be trained
with data from different areas but this should be done with caution, as the correlation of AGB
to different EO datasets might exhibit regional variations due to factors such as forest
structure, species composition and wood density, allometry, atmospheric effects, and
vegetation moisture.

iii. If needed, MaxEnt can deal with overfitting using a regularization parameter (L1-
regularization) to reduce model complexity. However, the amount of regularization to smooth
the model is not clear. Smaller values than the default value of 1 might overfit the model and
result in a closer fit to the training data, while higher values will result in distributions with
higher dispersion. The default regularization value (no regularization) will initially be used and
then optimized as required.

An exponential model is used to estimate the MaxEnt probabilities. As this model is not bounded
above, using the model to extrapolate to regions out of the range of the EO layers in the study area
can be problematic. This can be averted by using MaxEnt’s logistic output which transforms the
exponential model to a logistic model.
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3.4.3.4 Methods to assign accuracies in the uncertainty map
The uncertainty of the AGB prediction (€preqiction) is calculated from the RMS error (o455) per pixel.
The following equations are used (Saatchi, Harris et al. 2011):

Eprediction = Um/AGB x100 Eq.3-27

N (AGB; — AGB)* P,

04GB = SN P Eq. 3-28
i=111

The total uncertainty at pixel level is composed of different sources of error which are assumed to be
random and independent. These are propagated using the following equation proposed by Saatchi,
Harris et al. (2011):

— 2 2 2 1
€AGB = (Erzneasurement + gallometry + gsampling + gprediction) /2: Eq. 3-29
The values of these errors are estimated from the prediction probabilities of the MaxEnt and from
current literature (Chave, Condit et al. 2004, Mitchard, Saatchi et al. 2011, Saatchi, Harris et al. 2011,
Weisbin, Lincoln et al. 2014). The error sources used are the following:

Emeasurement- The measurement error of tree level parameters such as diameter and tree height
averaged at plot level (Chave, Condit et al. 2004). This was assumed to be 10% in this study (Mitchard,
Saatchi et al. 2011).

Eallometry* The error in estimating AGB using allometric equations. Depending on the allometry used
this varies from 11% to 22% (Chave, Condit et al. (2004).

Esampling size* This originates from the variability of AGB within the pixel area and depends on the size
of the plots used to upscale the AGB measurements to the pixel level. It is approximated using data
from Chave, Condit et al. (2003) on the AGB variability of a 50 ha plot. Using the sampling size equation
for a 95% confidence interval, Chave, Condit et al. (2003) found that a minimum of 160 plots of 0.04 ha
is needed to estimate the biomass of a 50 ha plot with £10% uncertainty. This means that a sampling
intensity of 12.8% (0.04x160/50) is needed. By assuming the same variations of AGB in the 1 ha INFyS
primary unit (see Training data section), the number of 0.04 ha subplots needed to reach the same
sampling intensity will be 3.2. Each 1 ha primary unit used for pixel calibration uses four 0.04 ha
subplots. Thus, the uncertainty of the AGB estimation will decrease to approximately 8.4% (10 X

J32/4).

Eprediction: This is calculated for each pixel from the prediction probabilities of the MaxEnt model. It
also accounts for the representativeness of the sampling sites of the true distribution of AGB in the
region (Saatchi, Harris et al. 2011).

3.4.3.5 Methods to test the accuracy of the estimates

The validation data are used for accuracy assessment based on the recommendation from the
GlobBiomass Validation protocol (D5 document).
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3.4.4 Products

The proposed AGB map for Mexico aims to improve on previous studies using the most recent EO
datasets and state-of-the-art methods. Current pan-tropical maps (Saatchi, Harris et al. 2011, Baccini,
Goetz et al. 2012) have pixel spacing of 500m and 1000m respectively, but the proposed AGB map has
pixel spacing of 25 m, while the AGB map of Mexico due to Cartus, Kellndorfer et al. (2014) has a pixel
spacing of 30 m (see Table 3-5). Recent studies suggest that optical imagery (Landsat, MODIS) is
correlated with AGB beyond the theoretical saturation due to canopy closure, especially in the infrared
bands (Kellndorfer, Walker et al. 2011, Baccini, Goetz et al. 2012) which are sensitive to shadowing and
moisture differences. These bands were not used by Cartus, Kellndorfer et al. (2014) but are used in
the current map. The 30 m posting SRTM DEM is used instead of the 90 m used by Cartus, Kellndorfer
et al. (2014), which may lead to better predictions of AGB in mountainous regions. We produce not
only an AGB map, but also an Uncertainty map.

3.4.5 Madifications for the 2005 and 2015 epochs
Methods
The method used is the same for all epochs

Data
2005: Landsat 7 SR 2004-2006, ALOS PALSAR mosaics for 2007-08, Hansen’s Landsat percent tree
cover, and 30m SRTM.

2010: Landsat 7 SR 2009-2011, ALOS PALSAR mosaics for 2009-10, Hansen’s Landsat percent tree cover
and 30m SRTM.

2015: Landsat-8 SR 2014-16, ALOS-2 PALSAR-2 mosaics for 2015-16, Sentinel-1 2015-16, Hansen’s
Landsat percent tree cover and 30m SRTM.




GlobBiomass ‘ Page 64

V05

S OEBRIOmMASsS ATBD / DJF ‘ Date 28-Aug-17

3.5 Regional map: South Africa

3.5.1 General description of the region

The South African regional site (Figure 3-22) covers 333 500 km? and is situated along a 1300 km North-
South transect with a large precipitation gradient and various types of soil, such as granitic and basaltic
soils. It encompasses the eastern forest belt of the country, including the eastern part of the
Mpumalanga province, the Limpopo Provinces to the north-east, KwaZulu-Natal and a large part of the
Eastern Cape Province to the south. It contains various forest types: savannas with AGB mostly below
100 t ha?, which forms the main ecosystem (about 68% of the area), forest plantations stretching over
hundreds of km with various biomass classes of pine and eucalyptus, indigenous dense forests, and
coastal forests such as thickets. It also includes the Kruger National Park, which is very well
documented in terms of disturbances, such as fire and herbivory (in particular elephant browsing).

late decimages

Fig 3-22: The South African 333 500 km? regional site in red.

3.5.2 Datasets

3.5.2.1 Input data (used to drive the biomass algorithm)

Remote sensing imagery sensitive to forest AGB from different satellite sensors (optical and SAR) will
be used (Table 3-7). The core datasets will be L-band ALOS PALSAR and ALOS-2 PALSAR-2. The reason
for using ALOS data instead of ASAR or Sentinel-1 data is that the sensitivity of L-band SAR data to
biomass is better than C-band SAR data. However, the use of C-band data is not excluded for research
purposes, especially for the 2015 epoch when Sentinel-1 time series are available. Freely available
ALOS PALSAR mosaics of HH and HV y° with 25 m pixel size were produced by JAXA in 2007, 2008, 2009
and 2010 (http://www.eorc.jaxa.jp/ ALOS/en/palsar_fnf/fnf_index.htm). PALSAR-2 data from 2014
will first be supplied by JAXA through the K&C initiative, before the free distribution of PALSAR-2
mosaics (HH and HV). Mosaic data are provided as tiles of 112 km x 112 km, or 1° of latitude and 1° of
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longitude. Approximately 40 tiles are needed to cover the whole regional site. Mosaics are pre-
processed by JAXA, including ortho-rectification, slope correction and radiometric calibration between
neighbouring strips. Additional processing applied on the mosaic data by CESBIO ensures the suitability
of mosaics data for biomass estimation. Using FBD data would require far more processing work from
CESBIO and is not expected to provide better results as the mosaics already consist of dry-season
images in this area, which are optimal for AGB retrieval.

Freely available Landsat tree cover continuous field with 30 m resolution (a combination of Landsat
TM and Landsat ETM+) will also be acquired (from http://landcover.org/data/landsatTreecover/)
Additionally, freely available 30 m posting elevation data from the Shuttle Radar Topography Mission
will be obtained from EarthExplorer (earthexplorer.usgs.gov).

Table 3-7: Available remote sensing products and associated acquisition dates
SPATIAL

DATASET RESOLUTION 2000 2005 2010 2015
ALOS PALSAR archived 25 m « «

mosaics (HH, HV)

ALOS-2 PALSAR-2 FBD and 25 m «
mosaics (HH, HV)

Landsat products 30m X X

Shuttle Radar Topography 30m «

Mission-SRTM®)
(WElevation data from SRTM corresponds to the year 2000. As it is assumed that topography remains constant,
the same dataset will be used for all epochs

3.5.2.2  Training data

In situ AGB for 37 1-ha plots measured by CSIR in 2012 in the Kruger National Park’s savannas and
woodlands will be used for AGB mapping for the 2010 epoch. For the 2005 epoch, a high resolution
airborne Lidar transect acquired in 2004, which contains about 38000 samples that have been
transformed to AGB, were used. For the 2015 epoch, CSIR has measured 56 new 1-ha biomass plots
between 2014 and 2016 in different biomes: 31 plots in savannas, 17 plots in pine and eucalyptus
plantations, and 7 plots in indigenous forests. 50% of the in situ data for each epoch will be selected
using stratified random sampling to train the algorithm.

3.5.2.3 Validation data
The remaining 50% of the in situ data will be made available for validation.

3.5.2.4 Data used for accuracy assessment

The validation data are used for accuracy assessment by CESBIO. In addition, Lidar data available from
CSIR will be used to validate the biomass maps. These Lidar data are an independent data source and
can provide reliable biomass estimation locally.

3.5.3 Methods

A method has been developed to map AGB using L-band SAR data in woody ecosystems with AGB less
than 100 t ha. It was first developed using PALSAR data in Fine Beam Dual Polarisation mode (FBD) at
a few test sites, then extended to country scale using PALSAR mosaic data to map AGB in the Cameroon
savanna (Mermoz et al., 2014). The method was derived from analysis of PALSAR data as a function of
AGB, using a reliable dataset of in situ AGB estimates from 41 plots, each of about 1 ha.




BAY GlobBiomass ‘ Page 66
— Yl‘f i V05
.. A
BIOoOmMASs ATBD / DJF ‘ Date 28-Aug-17

The method consists of a pixel-based inversion of the pre-processed SAR data into AGB. The
development of the inverse model was based on experimental results interpreted using the theoretical
MIPERS model (Villard, 2009). The theoretical model was used to simulate the impacts of forest
structure, environmental conditions and SAR parameters on the relationship between L-band SAR data
and the AGB of the forest under study. Model simulations indicated that for given SAR specifications
(frequency, polarisation and incidence), and for a given forest structure and soil and vegetation
moisture conditions, the relationship between L-band backscatter and AGB can be approximated by a
regression equation, which is found to closely follow the simplified water cloud model formulation.
whose parameters are determined using experimental data.

The parameters of this equation are determined using experimental and /or ancillary data. In the
present study, the SAR parameters are restricted in terms of frequency (L-band), polarization (HH and
HV), and range of incidence angle (34-40°). The effect of canopy structure is expected to be reduced
in the woody savanna, the main forest ecosystem under study. The other forest type in the study site,
which is forest plantation, will be taken into account. For the other types, which form approximately
30% in area, they will in a later phase of the project, when in situ plots in the plantations will be
available for the analysis of the relationship between backscatter and AGB. The PALSAR data forming
the mosaic to be used for 2007 (epoch 1 with a two-year shift) and 2010 (epoch 2) were acquired
during the dry season (May to July), minimizing the effect of varying soil and vegetation moisture.

Figure 3-23 shows the AGB mapping methodology comprising the following steps: 1) pre-processing of
SAR data to reduce uncertainties due to speckle while preserving the SAR resolution,; 2) establishing
the direct and inverse statistical regressions relating radar backscatter to AGB; 3) pixel-based mapping
of AGB and its uncertainty using a Bayes inversion approach.

3.5.4 Pre-processing of data

Pre-processing of SAR data includes slope correction, multi-image filtering, temporal image inter-
calibration and geocoding. Mosaic data are slope-corrected by JAXA as described in Shimada et al.
(2010). Multi-image filtering (Bruniquel and Lopes, 1997; Quegan and Yu, 2001) is applied to reduce
speckle while preserving the fine structure in the image, which is essential to detect small areas that
change between epochs. The filter requires the estimation of local mean intensities by averaging
intensity values in a local window around each pixel in each image. The window size is commonly 7x7
but is likely to change, depending on the final uncertainty to be obtained. For the biomass change
estimation, it is necessary to further minimise temporal changes caused by environmental conditions
or the SAR radiometric stability. To do so, the multi-temporal intensity data were normalised to have
approximately the same temporal mean and variance over the ’forest pixels’ using the methodology
of Du et al. (2001). In this method, pixels at the same location in two different scenes form
corresponding pixel pairs. A selection of dense forest pixel pairs is performed, avoiding the obviously
changed (i.e., deforested) ones. These pixels are used to compute an inter-annual backscatter.
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Fig 3-23: Flowchart of the methodology to map biomass using L-band SAR data.

3.5.4.1 Biomass estimation algorithms

For both HH and HV, the model for L-band indicates that the backscatter at low AGB (e.g. < 100 t ha?)
is dominated by ground scattering, and at AGB > 100 t ha, by volume scattering. In between, the
backscatter is a sum of volume scattering and ground scattering, attenuated by the canopy.

This can be expressed by a simplified formulation of the well-known Water Cloud Model (WCM) (note
that this treats the vegetation as a uniform slab of material, so has limitations in representing the
considerable amounts of bare or sparsely vegetated ground which occur in savanna):

Vo= g e “AGB 4 p(1-e¢ACB) [Eq. 3-30]

where:

a e“*%Bjs the underlying ground scattering, attenuated by the forest layer;

b (1-e“A%B) js the vegetation scattering;

cis the attenuation coefficient of the vegetation layer, which depends on vegetation structure and
water content.
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a is the unattenuated backscatter from bare ground (and gaps in the forest) and varies as a function
of soil moisture, surface roughness, topography, and to a lesser extent at L-band, herbaceous
vegetation cover; b is the backscatter value at saturation. The backscatter lying between a and b is a
sum of the attenuated ground contribution and the contribution from the forest canopy.

The biomass mapping method relies on inverting regression models based on data at a single
polarisation (HV) or dual polarisation (HH, HV). HV backscatter, which is from volume scattering, is less
sensitive to topography, and for low AGB (roughly below 20 t ha), more sensitive to variations of AGB
than HH, which is dominated by soil scattering. However, very low backscatter close to the noise
equivalent sigma-zero (e.g. approximately -32 dB for HH and -34 dB for HV) can be seriously affected
by system noise. On the other hand, HH can have higher AGB saturation level than HV, because the
backscatter comes from both volume and ground scattering. However, the relationship is site- and
time-dependent. The single HV polarisation approach is expected to be more robust because HV is less
sensitive to ground effects, but the single HH polarisation approach could extend the AGB saturation
region. Combining HH and HV polarisations has been shown to increase the retrieval performance in
this study. This could be achieved by a multivariate regression, but the results would be highly
dependent on the in situ plot dataset. We therefore use a method that takes into account the joint
probability density function of HH and HV, by formulating the inversion problem in a Bayesian form
(Tarantola et al., 2005).

In order to minimize the error propagation which would result from the direct use of Equation 3-29 to
convert y° into AGB, a Bayesian approach is preferred, as proposed in previous studies (Notarnicola
and Posa, 2004; Tarantola, 2005). Note that in the following, we use simplified expressions for the
probability density functions, where Y&y = Y94 obs 15 replaced by Y&y ons» Yoy = Yov obs is replaced
by Y%y ops » and AGB = B is replaced by B.

The Minimum Mean Square Error (MMSE) estimator of AGB is given by the conditional expectancy
(Couhert, 2009):

AGBmax
AGBgstim = E[AGBly?{H obs 'YIO1V obs] = fo B. p(Blng obs JY?{V obs)- aB [Eq. 3-31]

The inversion therefore requires the calculation of the posterior probability p(B|y2,H obs » Yov Obs) of
AGB given the observation (y?m obs + YEV obs ), which is obtained using Bayes theorem:

) _ (Y obs Yiv obs|B)P(B) [Eq. 3-32]

B 0 , 0
p( |VHHobs YHV obs p(ylgHobs ’yIE]IVObs)

Three terms need to be quantified. The marginal likelihood P(Y 4 obs » Yov obs) iS cOnstant in the
scene and is therefore neglected, since the expression will be normalized to ensure the integrated
probability equals 1. The prior probability, p(B), corresponds to the distribution of AGB in the scene.
This distribution is unknown in most cases, and its probability density function is therefore considered
uniform over the [0 AGB.x] range, where AGBn.x represents the assumed highest biomass found in
the savannahs and woodlands of South Africa. By analysing the distribution of AGB obtained from
existing AGB maps across the areas of savannahs and woodlands identified in South Africa from the
ESA Climate Change Initiative (CCI) Land Cover 2010 map (http://www.esa-landcover-cci.org/), we
found that a reasonable estimate of AGBnax ranges between 100 and 150 Mg.ha™.
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The likelihood function p(ng obs » VIV obs] B) accounts for the dispersions of HH and HV backscatter
caused by environmental conditions and forest structure, for a given AGB value. These dispersions are
considered independent in HH and HV (simulations with MIPERS indicate that the inter-dependence
can be significant if we constrain some of the forest descriptors for a given AGB, but becomes negligible
if we consider the whole set of possible realizations (forest structure, ground topography, soil
moisture). The joint conditional probability density function can thus be expressed as the product of
the individual conditional probability density functions:

p(Y?{H obs Y?{V obslB) = p(YIOiH obs |B) 'p(Y?{V obs |B) [Eq' 3_33]

For a given biomass value B, the estimation of the probability density function p(ygbs |B) for each
polarization requires two steps.

First, we estimate the theoretical backscatter 9., through inversion of the water cloud model. This
represents the expected backscatter values for the environmental conditions (soil moisture,
vegetation structure) prevailing for the reference data. We then express the probability that the
observed backscatter yZ,, deviates from this theoretical backscatter yY,,, because of local
environmental effects. We model the probability of y 2, using a Gaussian distribution characterised
by a mean value equal to y/,.,, and a standard deviation 0, estimated by simulation using the
MIPERS (Multistatic Interferometric Polarimetric Electro-magnetic model for Remote-Sensing) model
(Villard, 2009). Like other EM models, MIPERS has a limited capacity to predict absolute values, and is
much more relevant for relative trends (temporal dynamics, polarisation ratios, etc.). Hence it is not
used here to predict the backscattering coefficient, only its variability.

This 0y, term models the variability of the backscatter due to environmental conditions or forest
structure. The forest growth model used to feed the geometrical parameters to the MIPERS model is
fully described in Mermoz et al. (2015) and is calibrated using the available in situ data. Assumptions
are made to define the range of values of other required MIPERS inputs, such as soil and vegetation
moisture, soil roughness etc. We vary the MIPERS inputs and propagate these variations by Monte
Carlo simulations to obtain the standard deviation of the backscatter, denoted o, - Note that
Ogimy Varies with AGB: higher values are associated with low AGB (the backscatter being very
dependent on the environmental conditions) and lower values are associated with high AGB (the
backscatter is more stable over dense forests than over bare soils). For a given yJ,, the likelihood
function p(ygbslB) is therefore estimated for each polarisation as follows:

0 0 2
_1{Yobs~Ytheo®)
1 2 Tsimu(B)

0 = -
p(yobslB) = V27 0 5o (B) e [Eq. 3-34]

Combining Equations 3-31 to 3-33 leads to the following expression for the posterior probability:

0 0 2 0 0 2
_1{YHH obs"YHH theo(B) |  _1[YHV obs”VHV theo(B)
2 9HH simu(B) e 2 gy simu(®B)

P(BIYSH obs » Yo ops) = K = [Eq. 3-35]

oHH simu(B) ony simu(B)

where K is a normalization factor.
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The mode of the posterior probability density function described in Equation Eq. 3-34 gives the
maximum likelihood estimate of AGB, i.e. the most likely value of AGB for a given observation and for
a uniform distribution of AGB, but the MMSE estimator given in Equation Eq. 3-31 is preferred to
minimize the error.

3.5.4.2 Training methods

Three parameters, g, b, and ¢, are required for equation [3-30]. Different approaches can be used to
estimate them:

i) Use of statistical regressions between the SAR data and in situ plot data, provided that the
latter are of sufficient number and distributed over the relevant range of AGB and plot
conditions.

ii) When the in situ plot data do not meet these requirements, a and b can be estimated from
the SAR data, or using ancillary data.. Parameter a is extracted from pixels corresponding
to bare ground and b from pixels corresponding to closed forests:

e Using ancillary data such as Landsat tree cover continuous field from Sexton et al.,
(2013). Mean values of backscatter from pixels corresponding to 0 and 100% cover
are used as proxy for a and b by Santoro et al. (2011).

e Using a histogram of the backscatter of the SAR scene over forest land (where
water, steep slope and manmade targets are masked out). Parameters a and b
could be derived from the low and high end of the distribution (e.g. the 5" and
95'™ percentiles, to be defined after testing).

Parameter ¢, which represents the vegetation attenuation coefficient, varies as a function
of vegetation water content and vegetation structure (vertical and horizontal distribution
of scatterers, number of stems per hectare, etc.). Hence ¢ changes with forest type, and
must be derived using in situ AGB plot data.

In this study, the reference AGB data (from in situ measurements or from Lidar, depending on the
epoch) are not distributed sufficiently well to use approach i). We will therefore use approachii), using
ancillary data for estimating b. For the 2015 epoch, the in situ dataset may be representative enough
to use approach i). We will also test approach ii) to compare the performance of both approaches. The
approaches will be evaluated in terms of AGB uncertainty assessment.

3.5.4.3 Methods to assign accuracies in the uncertainty map

The uncertainties in in situ AGB and the SAR measurements, together with errors due to retrieval
methods, are taken into account in quantifying the overall accuracy of the retrieved AGB.

In situ AGB estimates are affected by a number of error sources, including most importantly field
measurement errors (diameter at breast height, tree height), allometric models, and discrepancy
between the sampled area and the pixel coverage (Chave et al., 2004). An error of 10% is associated
with the wood density and an error of 5% with the allometric equations (Chave et al., 2004), while the
errors related to diameter at breast height and tree height measurements are estimated to be 2.25%
and 4.47% respectively in a previous study (Mermoz et al., 2014). Similarly to what was done in this
study, we propagate these errors by Monte Carlo simulations to yield a standard deviation associated
with plot-based AGB estimates. This approach yields a mean field measurement error of om= 9.7%
(standard deviation of the in situ AGB linked to measurement) for the 37 1-ha plots measured in 2012
in South Africa. The sampling errors os (standard deviation of the in situ AGB linked to sampling)
associated with the mismatch in spatial scales between the field plots and the pixel size is estimated
for each plot using Figure S10 from Réjou-Méchain et al. (2014), with a 9% mean error. The field
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measurement error om and sampling error os are then combined by adding the associated variances,
to obtain the overall field data SD at the plot level:

OAGB Field = /015 +0¢ [Eq. 3-36]

The estimation of radar backscatter at the pixel level is affected by two main error sources: the
radiometric accuracy and speckle. Speckle is modelled as a multiplicative noise and depends on the
ENL. The ENL is defined as p%/c?, where p and o are the mean value and standard deviation of the
backscatter. With an ENL of 112, the standard deviation caused by speckle osp is almost constant in a
dB scale and equal to approximately 0.45 dB. The radiometric accuracy can be split into the absolute
radiometric bias and the radiometric stability. Shimada et al. (2009) estimated the overall radiometric
accuracy ogra to be 0.76 dB using corner reflectors and 0.22 dB from analysis of Amazon forest data;
the latter could be referred to as radiometric stability. In our study, we use a radiometric accuracy of
0.5 dB. Under the assumption of independence between the aforementioned sources of errors, the
overall SAR backscatter SD can again be estimated using a quadratic sum of variances:

Osar = faszp + 03, (Eq. 1.37)

The resulting osar value is 0.64 dB.

Assuming that uncertainties 04¢p rietq @and dsar are independent, their variances can be added,
leading to the resulting total error of the AGB estimate uncertainty.

3.5.5 Products

The final products are AGB and AGB accuracy maps at 25m resolution in 2007, 2010 and 2015, and
change maps between 2007, 2010 and 2015.

3.5.6 Madifications for the 2005 and 2015 epochs

Methods
The same method will be used for all epochs.

Data

Input data

Table 3.8. Available remote sensing products and associated acquisition dates

SPATIAL
DATASET RESOLUTION 2000 2005 2010 2015
ALOS PALSAR archived 25 m « «
mosaics (HH, HV)
ALOS-2 PALSAR-2 mosaics
25m X

(HH, HV)

Landsat products 30m X X
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SPATIAL
DATASET RESOLUTION 2000 2005 2010 2015

Shuttle Radar Topography
Mission-SRTM® 30m X

Reference Data

The reference data for the 3 epochs are described in Section 3.5.2.2.
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4 Commonalities and differences between the regional approaches

All the regional approaches are based on PALSAR data, although Sweden already has an operational
approach to national biomass mapping based on optical and lidar data, and associated national maps
for 2005 and 2010. The methods are essentially of two types, data-driven (Poland, Indonesia, Mexico)
and model-driven (Sweden with PALSAR data, South Africa). The data-driven approaches rely on
substantial amounts of in situ data to allow regression methods or, in the case of Mexico, Maxent
methods to be developed. The two model-driven approaches both use a simplified version of the
Water Cloud model, for which auxiliary datasets of forest cover and forest density are essential in order
to estimate parameters. The main methodological and data aspects of the different approaches are

given in Table 4.1.
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Table 4.1: The primary methods and data requirements of the regional approaches, together with
comments on issues concerning high biomass forests

Region Primary Data Primary Method High Biomass Ground Data
Poland PALSAR 25m Random Forest; the An implicit assumption Plots, radius =
mosaics HH+HV | whole country as an is that Random Forest 12.6 m, screened
(2009+2010), analysis unit can overcome the to represent
additionally saturation issues around | homogenous
ERS-2 + ASAR 100 - 150 m3/ha shown areas and
in their measurements, | aggregated
even though the
average stem volume is
up to 270 m3/ha
Sweden Optical Spot kNN estimation with | Saturation effects not National Forest
4/5, PALSAR Spot 4/5 and NFI commented on but the Inventory plots
strips, 8+4 data + water cloud model relies on stem with 7m or 10m
observations model and volume of “dense radius
for 2014 BIOMASAR approach | forest”, which must be
with multi-temporal | estimated for 30 km x
PALSAR data. New 30km processing tiles
Lidar data used to from external sources
select the best
alternative map
Indonesia | PALSAR 25m Regression models, No saturation assumed, | Plots,
mosaics HH+HV | using Kalimantan as based on earlier work by | rectangular
(2007+2009), an analysis unit. the same researchers (20m x 50m) and
additionally Ratio and texture (and others but with circular (radius
one ASAR/IM values at pixel lower biomass forest) varying between
coverage spacing of 100 m: but reference is madeto | 16 mand 35 m
2004+2005, AGB=a; e +a, Mitchard et al (2011)
Sentinel-1 IW e'2+c where L-band saturation
VV+VH (2015), | With so many input limit is stated to be
PALSAR-2 variables, over-fitting | around 200 t/ha.
mosaics HH+HV | identified as a
(2015) challenge
Mexico PALSAR 25m MaxEnt to estimate AGB above 200 t/ha is Plots from the
mosaics probabilities of assumed to be Mexican
HH+HV, discrete biomass insignificant in Mexico National Forest
Landsat data classes and the Inventory, 1 ha
and DEM data probability weighted sampled with 4
average over the plots with a
biomass classes; radius of 11.28
whole of Mexico m
planned as an
analysis unit
South PALSAR 25m Bayesian approach No saturation assumed 1 ha plots (37 -
Africa HH+HV mosaics | using the water in savanna areas. It is 120 of these)
for 2007 and cloud model unclear whether other
2010, PALSAR-1 forests are mapped
dual-pol
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(strip?) data for
2015

5 Properties of the regional biomass maps

5.1 Introduction

In this section we present analysis of the above-ground biomass (AGB) estimates for all five regional
products and for the 2005, 2010 and 2015 epochs in terms of the distributions of the biomass estimates
within different biomass ranges. The purpose of this analysis is to give a more complete description of
the properties of the regional products, to assess whether they satisfy what was requested in the
Statement of Work, and to quantify how they differ from the products requested by the users in Task
1. The analysis is based on histograms of the estimated biomass values within specified biomass
ranges, together with summary statistics. In particular, for each region the following information is
provided for the three epochs:

1. ATable showing for each biomass range:
a. the number of reference values, n;

the average estimated AGB;
the average reference AGB;
the root mean square error (RMSE);
the R? value;
the standard deviation (SD) of the errors;

g. the bias.
The same information is also provided for the overall dataset for each epoch.

~ o a0 o

2. Histograms of the errors (residuals) defined as estimated value — reference value in each AGB
range, together with summary statistics on the errors (number of points, and their average
value and standard deviation (SD)).

3. Histograms of the AGB values in the reference data and the overall estimated data.

4. A scatterplot of the estimated AGB against the reference values.
Note that for South Africa only information for the 2005 epoch is provided. This is because for 2005
the reference data is an AGB map obtained from a Lidar transect, which contains about 38000 samples
that are divided equally into training and validation data, while in 2010 only 44 reference plots are

available; this is insufficient for meaningful statistical analysis.

This information is discussed for each region separately, but in Section 5.7 we provide an overview of
the overall findings and discuss their implications in the context of GlobBiomass objectives.

To clarify how some of the quantities are defined, denote the set of reference values in a given range
of AGB as x; and the associated estimated AGB as Yi. Then write the average values as:

B - 13
X_Hzl“xi and y_ﬁzl:yi
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The bias in the given range is defined as b =y — X . This (non-standard) definition of the bias in the
estimator means that the residual errors must have mean equal to b since the error in estimating point

i is given by & = yi — Xi, and (?:)_/—Y=12yi -X, =b.
n-

So we can write the error as €, =b + &, where g is mean-zero,and y, = X, +b + ¢,

The Mean Square Error (MSE) is given by:

n

%Zn“(yi_ %ib g) =D’ %Zgi2=b2+var(g).
1 1

1

where var denotes variance = SD? and SD is standard deviation. Hence the RMSE is given by:
RMSE =+/MSE = /(b? + SD?(¢)

This relation helps us to see whether the dominant contributor to the RMSE is the bias or the variance.
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5.2 Poland

For both all epochs, the estimated AGB has its lowest bias in the middle of the AGB range. AGB tends
to be increasingly overestimated for smaller values of AGB (by up to ~150 t/ha) and increasingly
underestimated for larger values of AGB (Table 5.1 and Figures 5.1a-c). This is what would be expected
for many forms of data fitting (e.g., in regression, the regression curve passes through the point

(B,,,B.,), where B,

et 1 o and §est are the overall means of the reference and estimated datasets
respectively). This compression of the estimates around the mean value is clearly seen in the overall
histogram of estimated AGB, which is roughly Gaussian (though skewed), while the reference data
exhibit a uniform distribution. For all epochs, the relative bias (i.e., bias/(reference mean)) exceeds
100% for the lowest biomass range and exceeds 25% for AGB > 250 t/ha; it is consistently less than
20% only in the AGB ranges from 150-250 t/ha. The RMSE values are larger for large and small AGB
and smaller near the middle of the AGB range. Both these effects are again simply a result of the fitting
procedure. By comparing the biases with the SDs shown on the histograms it can be seen that the
RMSE is dominated by the bias except for the 150-200 t/ha range for 2005 and 2015 and the 100-150
and 150-200 t/ha ranges for 2010 . The overall relative RMSE is 33% in 2005, 39% in 2010 and 35% in
2015, but Table 5.1 shows that this does not reflect the way the error is divided across biomass ranges.
Figures 5.1a-b indicates that the retrievals show little sensitivity to AGB above about 175 t/ha, which
is the familiar saturation effect expected for L-band data, though this saturation value is higher than is
often reported. The AGB retrievals in 2015 (Figure 5.1c) were based on Sentinel-1 (C-band) and
Sentinel-2 and show a similar saturation effect to that observed in 2005 and 2015.
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Table 5.1. Summary statistics for the above-ground biomass (AGB) maps of Poland for the 2005, 2010
and 2015 epochs. The values are based on an independent sample of reference AGB values and
reported by AGB class across the entire range of reference AGBs. NA — not available; RMSE — root mean
square error; SD — standard deviation.

2005 epoch
AGB Average Average .
classes n estimatged referer?ce RMSE R? SR, Bias
(t/ha) AGB (t/ha) | AGB (t/ha) | (/M3 (t/ha) (t/ha)
13 79 26 58 0.3 25 53
14 132 77 62 0.2 26 55
16 166 130 41 0.1 20 36
16 178 176 21 0.0 22 2
14 192 222 40 0.0 27 -30
16 210 280 73 0.5 22 -70
89 162 156 52 0.7 NA 6
2010 epoch
AGB Average Average
classes n AGB AGB RMSE R2 SD(error) Bias
(t/ha) estimates | reference (t/ha) (t/ha) (t/ha)
(t/ha) (t/ha)
13 89 26 67 0.4 23 63
19 130 81 54 0.0 24 49
17 136 128 26 0.2 25 8
16 156 177 32 0.0 25 -21
11 172 242 62 0.0 20 -70
8 184 269 86 0.5 16 -85
84 140 137 54 0.6 54 3
2015 epoch
AGB Average Average
classes n AGB AGB RMSE R2 SD(error) Bias
(t/ha) estimates | reference (t/ha) (t/ha) (t/ha)
(t/ha) (t/ha)
25 114 22 99 0.17 37 92
64 152 80 78 0.14 29 72
89 174 127 54 0.15 26 47
98 181 174 28 0.02 27 7
95 187 224 43 0.07 23 -37
80 202 273 77 0.02 30 -71
451 177 171 60 0.40 60 6
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Figure 5.1a. Histograms of above-ground biomass (AGB) residual errors (estimated minus reference)
by AGB class (0-50 t/ha, 50-100 t/ha, 100-150 t/ha, 150-200 t/ha, 200-250 t/ha, >200 t/ha) and overall,
histograms of reference and estimated AGB data, and scatterplot of estimated against reference AGB
values for epoch 2005 in Poland.
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Figure 5.1b. Histograms of above-ground biomass (AGB) residual errors (estimated minus reference)
by AGB class (0-50 t/ha, 50-100 t/ha, 100-150 t/ha, 150-200 t/ha, 200-250 t/ha and >200 t/ha) and
overall, histograms of reference and estimated AGB data, and scatterplot of estimated against
reference AGB values for epoch 2010 in Poland.
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Figure 5.1c. Histograms of above-ground biomass (AGB) residual errors (estimated minus reference)
by AGB class (0-50 t/ha, 50-100 t/ha, 100-150 t/ha, 150-200 t/ha, 200-250 t/ha and >200 t/ha) and
overall, histograms of reference and estimated AGB data, and scatterplot of estimated against
reference AGB values for epoch 2015 in Poland.
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5.3 Sweden

For Sweden, the chosen approach overestimates the lowest values of AGB by up to 33 t/ha and
increasingly underestimates AGB for higher values for all epochs (Table 5.2); for the 2005 epoch this
underestimate is 81 t/ha for the highest AGB class. The bias is least near the mid-range of AGB. This is
exactly the same pattern as is seen for Poland, probably for similar reasons, even though the
methodology is different. The relative bias at the lower end of the AGB range is up to 200% in 2005
and 2015 and at the upper end is around 40% (all epochs). As for Poland, the RMSE values are smaller
near the middle of the AGB range and except in the middle of the range the main contributor to the
RMSE is bias. The overall relative RMSE is 36% in 2005 and 2010 and 62% in 2015, and exceeds 28% in
all the AGB ranges. The inclusion of ASAR (by inversion of a water cloud model) only slightly improves
the AGB retrieval based exclusively on the KNN method (see scatterplots in Figures 5.2a-b and compare
the 2010 values in Table 5.2). Comparison between the histograms for the NFI reference plots and the
retrieved values shows that the retrievals to some extent capture the actual AGB structure of the
Swedish forests for the higher AGB levels, but do not represent the lower AGB levels well, in particular
failing to pick up the large proportion of forest stands in the 0-50 t/ha range. In 2015, the inclusion of
L-band (BIOMASAR-L PALSAR-2) does not improve the retrievals in comparison with those obtained in
2005 and 2010 (based on the merged kNN + BIOMASAR-C ASAR method), confirmed by the high overall
relative RMSE (62%).
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Table 5.2. Validation statistics of the above-ground biomass (AGB) maps of Sweden, derived using the
combined KNN and BIOMASAR-C ASAR method (2005 and 2010 epochs) and the BIOMASAR-L PALSAR-
2 method (2015 epoch). The values are based on an independent sample of reference AGB and
reported by AGB class and across the entire range of reference AGB. For the 2010 epoch we also
tabulate the corresponding values for KNN on its own. NA — not available; RMSE — root mean square
error; SD — standard deviation.

2005 epoch
AGB Average Average
classes n estimated | reference RMSE R? SD(error) Bias
(t/ha) AGB AGB (t/ha) (t/ha) (t/ha)
(t/ha) (t/ha)

0-30 878 47 14 40 0.06 22 33
30-60 822 71 45 38 0.06 26 26
60-90 808 84 74 28 0.02 26 10

90-120 538 93 104 31 0.03 29 -11
120-150 361 101 134 45 0.00 31 -33
150-180 265 107 164 66 0.00 34 -57
180-210 137 112 193 87 0.00 33 -81
Overall 3,925 80 80 29 0.35 29 0
2010 epoch
AGB Average Average
classes n estimated | reference RMSE R? SD(error) Bias
(t/ha) AGB AGB (t/ha) (t/ha) (t/ha)
(t/ha) (t/ha)

0-30 782 40 14 24 0.14 24 26
30-60 807 69 46 35 0.07 26 23
60-90 792 88 74 31 0.03 28 14

90-120 563 101 104 29 0.00 29 -3
120-150 328 108 133 40 0.02 31 -25
150-180 235 117 164 59 0.02 35 -47
180-210 149 124 194 78 0.01 36 -70
Overall 3,805 83 83 30 0.43 30 0
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Table 5.2. Cont.
2010 epoch (kNN only)
AGB Average Average
classes n estimated | reference RMSE R2 SD(error) Bias
(t/ha) AGB AGB (t/ha) (t/ha) (t/ha)
(t/ha) (t/ha)
0-30 901 44 14 38 NA 23 30
30-60 871 70 46 35 NA 25 24
60-90 850 86 74 29 NA 26 12
90-120 606 98 104 29 NA 29 -6
120-150 361 104 133 43 NA 32 -29
150-180 245 114 164 61 NA 35 -50
180-210 155 120 194 82 NA 36 -74
Overall 3,989 91 83 32 NA 29 -13
2015 epoch
AGB Average Average
classes n estimated | reference RMSE R? SD(error) Bias
(t/ha) AGB AGB (t/ha) (t/ha) (t/ha)
(t/ha) (t/ha)
0-30 883 36 14 38 NA 31 22
30-60 967 63 46 39 NA 35 17
60-90 926 81 75 39 NA 38 6
90-120 718 95 104 42 NA 40 -9
120-150 446 104 134 52 NA 42 -30
150-180 285 111 163 66 NA 42 -52
180-210 174 118 194 87 NA 42 -76
Overall 4,607 78 85 53 NA 53 -7
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Figure 5.2a. Histograms of above-ground biomass (AGB) residuals (estimated minus reference) by AGB
class (0-30 t/ha, 30-60 t/ha, 60-90 t/ha, 90-120 t/ha, 120-150 t/ha, 150-180 t/ha and 180-210 t/ha),
overall histograms of estimated and reference AGB data, and scatterplots of estimated against
reference AGB values. The histograms refer to the combined KNN+BIOMASAR method, while the
scatterplots show the relationships for KNN, BIOMASAR-C ASAR and combined approaches for the
2005 epoch in Sweden.
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Figure 5.2b Histograms of above-ground biomass (AGB) residuals (estimated minus reference) by AGB
class (0-30 t/ha, 30-60 t/ha, 60-90 t/ha, 90-120 t/ha, 120-150 t/ha, 150-180 t/ha and 180-210 t/ha),
overall histograms of estimated and reference AGB data, and scatterplots of estimated against
reference AGB values. The histograms refer to the combined KNN+BIOMASAR method, while the
scatterplots show the relationships for KNN, BIOMASAR-L PALSAR and combined approaches for the
2010 epoch in Sweden.
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Figure 5.2c Histograms of above-ground biomass (AGB) residuals (reference minus estimated) by AGB
class (0-30 t/ha, 30-60 t/ha, 60-90 t/ha, 90-120 t/ha, 120-150 t/ha, 150-180 t/ha and 180-210 t/ha),
overall histograms of estimated and reference AGB data, and scatterplots of estimated against
reference AGB values. The histograms and scatterplot refer to the BIOMASAR-L PALSAR-2 method for

the 2015 epoch in Sweden.
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5.4 Indonesia

Table 5.3 shows the validation statistics of AGB mapped in Kalimantan during the 2005, 2010 and 2015
epochs. Average biomass estimates are consistently higher than those obtained from reference data,
indicated by a positive bias, and the bias is somewhat higher for the 2005 and 2015 epochs. The
magnitude of bias is different across AGB classes, with higher values in the 50-100 t/ha and 100-150
t/ha classes (which is the opposite of what is seen for Poland and Sweden). Figures 5.3a-c show the
histograms of AGB residuals (estimated minus reference) by AGB class (and overall), histograms of
estimated and reference AGB values and the scatterplot of estimated against reference AGB for the
2005, 2010 and 2015 epochs respectively. The histogram of the AGB estimates and the reference data
set depicts a similar distribution in all epochs. However, AGB values up to ~ 200 t/ha are strongly
overestimated in the three epochs, but more markedly in 2005 and 2010. Only for the AGB range
exceeding 200 t/ha are the residuals evenly distributed around 0 t/ha. In 2005 the relative biases in
the 50-100 t/ha and 100-150 t/ha ranges are 124% and 41% respectively, in 2010 the corresponding
values are 67% and 30%, whereas in 2015 the values are 71% and 32% respectively. This reflects the
structure seen in the histograms of the residuals: in 2005 the residuals in both cases are sharply peaked
about 75 t/ha, whereas in 2010 and 2015 they are more widely spread, particularly in the 100-150 t/ha
range. The RMSE for all ranges is similar in all epochs; the relative RMSE exceeds 23% in all ranges, but
for the lower ranges (0-50 t/ha and 50-100 t/ha) in many cases it exceeds 100%. Hence the relative
overall RMSE, ranging between 33% (2015) and 38% (2005), fails to capture the way the error is
distributed across the biomass ranges. In most cases the scatter in the estimates dominates the RMSE;
only for the 100-150 t/ha and 150-200 t/ha ranges for 2005 and 0-50 t/ha and 50-100 t/ha ranges for
2010 does the contribution from bias become comparable. The highest biomass values in the AGB
estimates are around 300 t/ha (2005 and 2010) and 250 t/ha (2015), whereas the reference data show
many data points with higher values in these regions. It should be noted that more than 55% (70% in
2015) of the points lie in the range above 150 t/ha and the scatterplots indicate that this is close to the
saturation value of AGB. This suggests that the regression will be dominated by these high values
(which will tend to make the mean values agree) and the scatter around these values will be roughly
random (which is seen in the histograms of the residuals). This would tend to lead to low bias in the
upper biomass ranges, as is observed.
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Table 5.3. Validation statistics of the above-ground biomass (AGB) maps of Kalimantan for the 2005,
2010 and 2015 epochs. The values are based on an independent sample of reference AGB and reported
by AGB class and across the entire range of reference AGB. NA — not available; RMSE — root mean
square error; SD — standard deviation.

2005 epoch

AGB Average Average D
classes n estimated | reference RMSE R2 . Bias

fieh ol Bl B (t/ha) | /")

(t/ha) (t/ha)

0-50 134 27 7 41 0.56 36 19
50-100 19 151 68 90 0.12 35 84
100-150 34 179 128 68 0.00 45 52
150-200 78 219 176 55 0.02 35 43

>200 154 239 273 62 0.11 52 -34
Overall 419 159 149 57 0.77 56 10

2010 epoch

AGB Average Average D
classes n estimated | reference RMSE R2 (- Bias

(t/ha) AGB AGB (t/ha) (t/ha) (t/ha)

(t/ha) (t/ha)

0-50 141 50 13 54 0.23 39 37
50-100 21 130 78 71 0.07 50 52
100-150 38 171 132 66 0.08 54 39
150-200 117 194 178 42 0.07 39 16

>200 184 207 247 60 0.01 44 -40
Overall 501 154 149 55 0.69 55 4

2015 epoch
Average Average
cII: Ssis n estimatged referer?ce RMSE R2 (ef:)r) Bias
(t/ha) AGB AGB (t/ha) (t/ha) (t/ha)
(t/ha) (t/ha)

0-50 83 19 10 27 0.08 NA 9
50-100 27 124 72 82 0.10 NA 51
100-150 42 165 125 62 0.10 NA 40
150-200 117 205 179 42 0.04 NA 26

>200 244 208 257 70 0.01 NA -49
Overall 513 169 179 59 0.64 NA -10
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Figure 5.3a. Histograms of above-ground biomass (AGB) residuals (estimated minus reference) by AGB
class (0-50 t/ha, 50-100 t/ha, 100-150 t/ha, 150-200 t/ha, >200 t/ha) and overall, histograms of
reference and estimated AGB data, and scatterplot of estimated against reference AGB values for
epoch 2005 in Kalimantan.




200
180
160

Reference AGB histogram

50 100 150 200

reference AGB t/ha

>200

Estimates AGB historgram

50

100 150 200
estimates AGB t/ha

>200

GlobBiomass ‘ Page 91
V05
ATBD / DJF ‘ Date 28-Aug-17
2010 epoch
n 141 n 21 n 38
mean 37t/ha mean 52t/ha mean 39t/ha
SD 39t/ha SD 50t/ha sD 54t/ha
0-50t/ha 50-100t/ha 100-150t/ha
70 8 16
60 7 14
50 >6 >12
[9) o5 o 10
g4 5, g
20 2 4
10 1 2
0 0 0
Residualsint/ha Residualsint/ha Residualsint/ha
n 117 n 187 n 501
mean 16 t/ha mean -40t/ha mean 4t/ha
SD 39t/ha SD 44t/ha SD 55t/ha
150-200t/ha >200t/ha Overall
70 90 200
80 180
€0 70 160
>0 > 60 > 140
2 g 2 120
g %0 g% $ 100
g 30 g 40 g g0
£ i 30 T 60
20 40
10 10 20
0 0 0
Residualsint/ha Residualsint/ha Residualsint/ha
n 501 n 501
mean 149t/ha mean 154 t/ha
SD 99t/ha SD 78t/ha

Estimated AGB int/ha

501
0.69

100

150 200 250

Reference AGB int/ha

300

350 400

Figure 5.3b. Histograms of above-ground biomass (AGB) residuals (estimated minus reference) by AGB
class (0-50 t/ha, 50-100 t/ha, 100-150 t/ha, 150-200 t/ha, >200 t/ha) and overall, histograms of
reference and estimated AGB data, and scatterplot of estimated against reference AGB values for

epoch 2010 in Kalim

antan.
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Figure 5.3c. Histograms of above-ground biomass (AGB) residuals (estimated minus reference) by AGB
class (0-50 t/ha, 50-100 t/ha, 100-150 t/ha, 150-200 t/ha, >200 t/ha) and overall, histograms of
reference and estimated AGB data, and scatterplot of estimated against reference AGB values for
epoch 2015 in Kalimantan.
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5.5 Mexico

An independent validation by AGB range was performed over Mexico using measurements from 696
NFI plots for the Epoch 2005-07 (533 Yucatan and 163 Central); and 700 NFI plots for Epoch 2010 and
2015 (524 Yucatan and 176 Central). The epochs and regions are similar in terms of bias and RMSE
across the set of biomass ranges. The pattern of bias by biomass range (Tables 5.4, 5.5 and 5.6) is
similar to that seen for Poland and Sweden, with overestimation in the lower biomass ranges and
underestimation in the upper ranges, even though the retrieval approach is quite different and the
range of biomass values encountered is much less in Mexico (the upper biomass class is >150 t/ha in
Mexico, but >250 t/ha in Poland and 180-210 t/ha in Sweden). This pattern of bias is not at all reflected
in the overall bias, which is small for all epochs and regions; this occurs because the underestimation
in the upper ranges is compensated by the overestimation in the lower ranges. Notable is that the
standard deviation of the residuals is roughly the same (around 20-30 t/ha) in all biomass classes and
epochs and the biases indicate the central tendencies in these histograms. The relative RMSE
considering both sites together is rarely less than 30% in any biomass range and in most cases greatly
exceeds this. Hence the relative overall RMSEs of 51% in the 2005/07 epoch, 54% in the 2010 epoch
and 56% in the 2015 epoch do not in any way capture the way error is distributed across the biomass
ranges. The main contributor to the RMSE is the scatter (although it is not as dominant as, for example,
in Sweden) except for the highest biomass range, where the dominant contribution comes from the
bias. It is worth noting that the overall AGB histograms for the retrievals and the NFl are quite different
(Figures 5.4a-c): the NFI data gives decreasing frequencies up to 150t/ha, whereas the inversions are
roughly uniform up to a clear mode at around 100 t/ha, cutting off fairly sharply above this. Finally,
although the combination of variables used in this method was sensitive to AGB up to ~150 t/ha, the
scatterplots show clear signs of saturation towards the upper end of the biomass range being observed
(beyond around 120 t/ha). Higher saturation levels can be observed in the map of Central Mexico for
all epochs.
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Table 5.4. Validation statistics of the above-ground biomass (AGB) maps of Mexico produced for the
2005/07 epoch. The values are based on an independent sample of reference AGB and reported by
AGB class and across the entire range of reference AGB. RMSE — root mean square error; SD — standard

deviation.
2005-07
Average Average
Site AGB n AGB AGB RMSE SD (error) Bias
Ranges estimates | reference (t/ha) (t/ha) (t/ha)
(t/ha) (t/ha)
0-30 67 19 13 21 21
30-60 44 51 45 29 28
60-90 29 71 75 35 35 -4
Central | 90-120 12 99 105 49 49 -6
120-150 9 94 133 55 39 -39
> 150 2 154 173 29 22 -19
Overall 163 49 48 31 31 1
2005-07
Average Average
Site AGB n AGB AGB RMSE SD (error) Bias
Ranges estimates | reference (t/ha) (t/ha) (t/ha)
(t/ha) (t/ha)
0-30 133 34 14 29 21 20
30-60 112 62 45 33 28 17
60-90 110 83 74 24 23 9
Yucatan | 90-120 77 87 104 29 23 -17
120-150 77 98 134 41 20 -36
> 150 24 97 165 71 21 -68
Overall 533 70 70 34 34 0
2005-07
Average Average
Site AGB n AGB AGB RMSE SD (error) Bias
Ranges estimates | reference (t/ha) (t/ha) (t/ha)
(t/ha) (t/ha)
0-30 200 29 14 26 22 15
30-60 156 59 45 32 29 14
60-90 139 81 74 27 26 7
Both
sites 90-120 89 89 104 32 28 -15
120-150 86 98 134 43 23 -36
> 150 26 101 166 69 25 -65
Overall 696 65 65 33 33 0
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Table 5.5. Validation statistics of the above-ground biomass (AGB) maps of Mexico produced for the
2010 epoch. The values are based on an independent sample of reference AGB and reported by AGB
class and across the entire range of reference AGB. RMSE — root mean square error; SD — standard

deviation.
2010
Average Average
Site AGB n AGB AGB RMSE SD (error) Bias
Ranges estimates | reference (t/ha) (t/ha) (t/ha)
(t/ha) (t/ha)
0-30 83 20 13 21 19
30-60 48 51 43 30 28
60-90 25 70 73 34 34 -3
Central | 90-120 12 106 104 42 42 2
120-150 6 134 130 24 24 4
> 150 2 160 200 64 49 -40
Overall 176 47 42 28 28 5
2010
Average Average
Site AGB n AGB AGB RMSE SD (error) Bias
Ranges estimates | reference (t/ha) (t/ha) (t/ha)
(t/ha) (t/ha)
0-30 130 35 14 33 26 21
30-60 109 60 44 33 30 16
60-90 111 81 75 23 22 6
Yucatan | 90-120 85 91 104 25 21 -13
120-150 54 91 133 46 17 -42
> 150 35 102 168 67 16 -66
Overall 524 69 70 35 35 -1
2010
Average Average
Site AGB n AGB AGB RMSE SD (error) Bias
Ranges estimates | reference (t/ha) (t/ha) (t/ha)
(t/ha) (t/ha)
0-30 213 29 14 29 25 15
30-60 157 57 44 32 30 13
60-90 136 79 75 26 25 4
Both
sites 90-120 97 93 104 28 25 -11
120-150 60 95 133 44 23 -38
> 150 37 106 170 67 20 -64
Overall 700 64 63 34 34 1
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Table 5.6. Validation statistics of the above-ground biomass (AGB) maps of Mexico produced for the
2015 epoch. The values are based on an independent sample of reference AGB and reported by AGB
class and across the entire range of reference AGB. RMSE — root mean square error; SD — standard

deviation.
2015
Average Average
Site AGB n AGB AGB RMSE SD (error) Bias
Ranges estimates | reference (t/ha) (t/ha) (t/ha)
(t/ha) (t/ha)
0-30 83 20 13 20 19 7
30-60 48 44 43 28 28
60-90 25 68 73 37 37 -5
Central | 90-120 12 82 104 36 28 -22
120-150 6 118 130 26 23 -12
> 150 2 149 200 65 40 -51
Overall 176 43 42 27 27 1
2015
Average Average
Site AGB n AGB AGB RMSE SD (error) Bias
Ranges estimates | reference (t/ha) (t/ha) (t/ha)
(t/ha) (t/ha)
0-30 130 36 14 35 27 22
30-60 109 56 45 31 29 11
60-90 111 75 75 21 21 0
Yucatan | 90-120 85 84 105 32 24 -21
120-150 54 87 133 52 23 -46
> 150 35 96 168 75 21 -72
Overall 524 65 71 38 37 -6
2015
Average Average
Site AGB n AGB AGB RMSE SD (error) Bias
Ranges estimates | reference (t/ha) (t/ha) (t/ha)
(t/ha) (t/ha)
0-30 213 30 14 30 25 16
30-60 157 53 44 30 29 9
60-90 136 74 75 25 25 -1
Both
sites 90-120 97 83 104 32 24 -21
120-150 60 90 133 50 25 -43
> 150 37 99 170 74 23 -71
Overall 700 60 63 35 35 -3
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Figure 5.4a. Histograms of reference (NFI) and estimated above-ground biomass (AGB) for 2005/7.
Histograms of residual errors (estimated minus reference) by AGB class (0-30 t/ha, 30-60 t/ha, 60-90
t/ha, 90-120 t/ha, 120-150 t/ha & >150 t/ha) and overall. Scatterplots of estimated against reference
AGB values for the 2005 epoch for Yucatan (bottom right), Central Mexico (bottom central) and for
both maps (Yucatan & Central) combined (bottom left).
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Figure 5.4b. Histograms of reference (NFI) and estimated above-ground biomass (AGB) for 2010.
Histograms of residual errors (estimated minus reference) by AGB class (0-30 t/ha, 30-60 t/ha, 60-90
t/ha, 90-120 t/ha, 120-150 t/ha & >150 t/ha) and overall. Scatterplots of estimated against reference
AGB values for the 2010 epoch for Yucatan (bottom right), Central Mexico (bottom central) and for
both maps (Yucatan & Central) combined (bottom left).
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Figure 5.4c. Histograms of reference (NFI) and estimated above-ground biomass (AGB) for 2015.
Histograms of residual errors (estimated minus reference) by AGB class (0-30 t/ha, 30-60 t/ha, 60-90
t/ha, 90-120 t/ha, 120-150 t/ha & >150 t/ha) and overall. Scatterplots of estimated against reference
AGB values for the 2015 epoch for Yucatan (bottom right), Central Mexico (bottom central) and for
both maps (Yucatan & Central) combined (bottom left).
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5.6 South Africa

The range of biomass covered by the South African sites is only up to 100 t/ha, and as for all other
regions the AGB is overestimated over this range and the bias is larger for the lower biomass range.
The RMSE is dominated by the scatter in the errors, with relatively little contribution from the bias,
except in the lower AGB class. In the lower AGB range the relative bias and RMSE are 175% and 325%
respectively. For the upper AGB range the relative bias is ~“0%, which probably reflects the fact that
the larger AGB values play a key part in controlling the fitting procedure, so that one would expect the
mean values of the reference and estimated AGB to be similar for larger AGB. However, Fig. 5.5 shows
that the points where AGB exceeds 80 t/ha are under-estimated (although no histogram is given for
this range, which contains only 278 points in the reference lidar data). Hence the model appears to
suffer the same problems of over-estimation of low biomass and under-estimation of high biomass
seen in the other regions. The histograms indicate the compensation of low values by high values in a
widely scattered distribution. The relative RMSE for the upper range is 21%. Note that the overall
relative RMSE of 75% is caused by the large number of points in the lower biomass range which leads
to the overall mean AGB being only 37 t/ha. Comparing the histograms for the overall reference and
estimated AGBs reveals that the estimated data does not capture the overall structure of biomass,
showing a much more even distribution of frequencies across the biomass range than in the reference
data, and not picking out the prominent spike in the lowest biomass range.

Table 5.7. Validation statistics of above-ground biomass (AGB) estimates of South Africa for epoch
2005 using an independent AGB reference dataset. RMSE — root mean square error; SD — standard
deviation.

Epoch 2005
Average Average
AGB AGB RMSE SD(error Bias
AGB ranges n estimates | reference (t/ha) i (t(/ha) ) (t/ha)
(t/ha) (t/ha)
7,441 22 8 26 0.01 21 14
5,924 36 30 19 0.07 18 6
3,982 53 48 17 0.08 16 5
1,163 68 68 14 0.06 14 0
18,788 37 28 21 0.40 19 9
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Figure 5.5. Histograms of above-ground biomass (AGB) residuals (reference minus estimated) by AGB
class (0-20 t/ha, 20-40 t/ha, 40-60 t/ha, and 60-80 t/ha) and overall, histograms of reference and
estimated AGB data, and scatterplot of estimated against reference AGB values for epoch 2005 in

South Africa.
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5.7 Summary and conclusions

The analysis in this section has revealed important properties of the biomass inversions. Common to
all regions is that lower biomass values (below around 100 t/ha) are overestimated. Although direct
regression is not being used, this means that the procedure producing a fit to the backscatter-biomass
relation has an intercept at zero biomass that is too large and/or the gradient of the fitting curve (i.e.
dy°/dB, where v° is the backscattering coefficient and B is the biomass) is too large for lower biomass
values. For higher biomass values, saturation of the L-band signal gives low sensitivity to biomass and
leads to underestimation of the true biomass in the methods used in Poland, Sweden and Mexico. The
Kalimantan inversions show little bias in the higher biomass range, but this seems to be because the
fitting is largely determined by the larger number of points at high biomass. This will tend to force the
mean values of the reference and estimated biomass to be close together for high biomass, giving low
bias. The low sensitivity to biomass however gives rise to large scatter about the true value. For South
Africa there are no high values of biomass.

Analysis of the structure of the errors reveals that for Poland the major errors, as expressed in RMSE,
come from bias, i.e. the fitting curve is not a good representation of the true biomass-backscatter
relation. This means that there is scope to improve the Polish results by use of an improved fitting
curve. For other regions the problem is mainly due to scatter in inversions, i.e. although the sensitivity
to biomass is being properly represented, the inversions are too noisy. It is not obvious how to reduce
this noise, except perhaps by reducing the spatial resolution. This may be effective if the noise is due
to the system, e.g. arises from speckle. It should also be stressed that apparent errors may arise from
inaccuracies in the ground data or, for example, geolocation errors, so that the reference data and
inversions are spatially mismatched.

It is clear from the findings above that overall RMSE (which varies between 33% and 75%) or relative
bias gives little information on the true accuracy of the inversions and how they vary with biomass.
Relative and absolute RMSE can vary widely with biomass level, but in many cases reported above
relative RMSE exceeds 30% in all biomass ranges.
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6 Regional Biomass Change Mapping
6.1 Introduction

When trying to detect and measure biomass change in a sequence of images, five types of change need
to be considered:

Random variation due to system noise and, for radar images, speckle
Environmental changes that affect biomass estimates

Sudden high-intensity change due to deforestation and fire

Lower intensity, possibly progressive change caused by forest degradation

ik wiNe

Biomass changes due to forest growth

The first two are nuisance factors when we are trying to measure changes in biomass. The third
involves almost complete loss of biomass, so only requires an accurate estimate of biomass before the
change event. The fourth is much harder to detect and measure, and there are few convincing studies
that show this is possible except at low levels of accuracy, particularly in moderate to high biomass
forests. The fifth is also hard to estimate accurately except in low biomass areas with rapid regrowth
(such as regenerating forest in the tropics or short cycle plantations). So overall, except in case 3,
measuring biomass change is a difficult problem.

Two routes are commonly pursued when investigating change in EO data:

1. Transform the data to a “product”, e.g. land cover or biomass maps, and assess differences
between the products
2. Detect change in the original data and then interpret it in terms of the desired quantities

Differences between products: This approach is straightforward and provides the Maximum
Likelihood Estimate of the change in biomass (for unbiased products whatever the distributions of the
random error in these products) but suffers from the fact that if the errors in the products are assumed
to be statistically independent, then a pixel-wise difference will have a variance that is the sum of the
variances of the errors in the individual products. As can be seen from the analysis in Section 5, this
would lead to very large errors in the change product. Note that the above applies to the random error
component in the products, but Section 5 shows clearly that bias is also an important component of
the overall error. For the difference of two products, the pixel-wise bias (which, as have seen, is
typically dependent on the true value of AGB) will be the difference of the individual biases. This could
have the effect of compensating for bias errors in the individual products, and its importance depends
on the extent to which errors in the products are dominated by bias (as for Poland and Sweden) or by
random error (all other regions).

Note that the requirement for the biomass estimates was that they should meet a relative accuracy of
20% or better, and the brief analysis below discusses the implications of this for estimating the accuracy
with which we can measure biomass change. It also assumes unbiased inversions. However, the
analysis in Section 5 indicates that for most regions both assumptions are invalid. Bias is a major source
of error for many regions and the precision being obtained in the inversions, measured as the standard
deviation of the error, is roughly independent of biomass, i.e., it is not a relative precision but an
absolute precision. Once the bias is removed, by methods still to be defined, the biomass—independent
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random error will remain as the control on accuracy. Hence the analysis below will need to be modified
once the bias-corrected inversions become available and the error analysis is redone.

Assigning an accuracy to a difference product becomes difficult when the accuracy of the individual
products is only described as a relative accuracy, since then the variance is dependent on the true
value of AGB, and the variance of the difference depends on the accuracy of both of the products (so
cannot be characterised by a single number). This is explained further by the simple analysis below.

For the purpose of this analysis we assume that the AGB product is unbiased, and the target relative
accuracy is p% at each pixel. The p% therefore corresponds to the precision of the measurement in the
presence of random disturbances. For simplicity, the measure of precision we use here is the standard
deviation (SD) of the biomass, rather than, for example, a Confidence Interval. Hence the SD of the
estimates of a true AGB value B is pB, where p = 0.2 for 20% relative accuracy.

A further simplifying (but probably incorrect) assumption is that the estimates are normally distributed
about the true value (this assumption can be assessed by examining the histograms of residuals, i.e.

errors, in Section 5). Then if we have 2 estimates, |_5>1 and |.3>2 , of AGB at a pixel at times sufficiently

separated that the random errors decorrelate, their difference B, — B, is zero-mean normally
distributed with variance p® (B’ + B>), where B, and B, are the true AGB values and the relative

accuracy, i.e. the SD/ mean, is:

pyB’+B:

Bl_BZ

This depends not only on B; — B, but also on at least one of the individual biomass values. The error
properties of this difference are still being developed, and will form part of the final version of the
ATBD.

Note that this approach to measuring change, possibly with some refinements, may be the only option
unless the AGB estimator used to form the individual products is based on single data-types with well-
characterised statistics.

Change detection in the data followed by interpretation: In this approach change is detected in the
original time series of data and then interpreted in terms of biomass change (this type of approach is
used in generating the MODIS burnt area product). Its first requirement is a well-founded way to detect
change in a time series of data (which may have data only for two times). This requires the datasets
used at each individual time to have known statistical properties (and if more than one dataset is being
used at each time, their joint distribution is needed). In the context of GlobBiomass, this approach is
most obviously applicable when the detection is based entirely on radar images, which have well
characterised statistical properties. Such an approach is described in Mermoz et al (2016) and is
proposed for change detection in the S. African region.
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6.2 Poland

The biomass change map will be produced at stand level, since the end users operate at stand level (a
forest stand is the minimum mapping unit [MMU] in the State Forest database). The total biomass will
be calculated for each stand for 2005 and 2010 and then subtracted to estimate the biomass change
per stand. To address the uncertainties associated with each of the biomass maps, a confidence
interval layer will be prepared based on the results from the external validation of the biomass maps
done at stand level. The external validation of the 2010 biomass map confirmed that the best predicted
biomass ranges between 100-250 t/ha at stand level (RMSE between 8 and 16 t/ha). So far the external
validation has been performed only in one forest district, not for the entire country. The first results
show that the clear-cuts are easily identified. However, since the biomass models overestimate low
biomass (see Section 5.2) it is currently not possible to estimate precisely any increase in biomass over
the five year period.

6.3 Sweden

For biomass change, the difference between the merged biomass maps, between 2005 and 2010 (and
possibly 2015, although it will be an entirely radar-based map) will be calculated. In addition, the
University of Chalmers (probably Maciej Soja) will work on radar-based change algorithms for the years
2010 and 2015 in one or two smaller regions in Sweden (Remningstorp and Krycklan). In this case the
approach used by CESBIO (Mermoz et al. 2016) may be appropriate.

6.4 Kalimantan (Indonesia)

Using a solely pixel-based change between two time-steps would result in a noisy change map with
little information. Therefore, an advanced change method for deriving AGB changes between two
epochs could be applied. The approach will include the following steps:

- Calculation of RMSE for AGB estimates for 50 t/ha intervals for each epoch (see validation
table)

- Calculation of possible range for each pixel (AGB estimate) by adding and subtracting the RMSE
from each AGB estimate; range = [AGBest-RMSE; AGBst+RMSE]

- Calculation of pixel-based AGB change between two epochs

- Calculation of minimum and maximum possible AGB change using AGBe.s-RMSE and
AGB.st+RMSE values

Possible steps to follow:
- Calculation of change / no change mask with discrimination of AGB increase and decrease
- Application of Minimum Mapping Unit (MMU) for AGB change
- Estimate of the accuracy of the AGB change value (if useful methods to derive this can be
developed)

The RMSE is taken from the validation tables in Section 5.4, where the RMSE is calculated for 5 classes
(0-50 t/ha, 50-100 t/ha, 100-150 t/ha, 150-200 t/ha and >200 t/ha). This means that two additional
raster layers are calculated. These are the possible MIN and MAX values of each estimate:

AGBest,min= AGBesi-RMSE

AG Best,max: AGB++RMSE
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This is done for each pixel in both epochs. The final result is a possible value range for each estimate
defined by the RMSE (AGBestmin, AGBest , AGBest max). Based on the calculated layers, a change/ no-
change mask, with discrimination of increase and decrease for the class change, can be generated by
using threshold values based on the calculated possible ranges. Change has definitely occurred when
there is no overlap of the value ranges of the AGB estimates in the two epochs:

¢  AGBestmax 11 < AGBestmin 12 (increase)
®  AGBestminT1 > AGBestmax 2(deCrease)

If no overlap of the two value ranges for t1 and t2 at pixel level exists this is defined as change. This
will allow us to create a change mask with very high accuracy. It still needs to be discussed, if a MMU
for the change will be applied and if we do so, which value for the MMU will be used.

6.5 Mexico

6.5.1 Methods

The AGB change maps will be generated based on the subtraction of both AGB epoch maps
(AGBepoch2 — AGBepoch1) at pixel level, which will provide the amount and the direction of the
change. Only forest AGB change is estimated.

Two sets of decision rules are generated to threshold those changes:

e Product 1 (based on independent validation per biomass range):
1. The independent validation of both epochs combined per biomass range is used to
define the standard deviation (SD) of the AGB map.
2. AGB change occur under these conditions:
= AGB Loss: Loss is more than 1SD or 2SD (in %)
= AGB Gain: Gain is more than 1SD or 25D (in %), but with the condition to be
higher than 1SD (in t ha?)

e Product 2 (based on uncertainty characterization at pixel level):

1. The uncertainty layer generated for each epoch is used to define an interval around
the AGB estimation (AGBepoch1l + SDepochl, and AGBepoch2 + SDepoch2)

2. AGB change is discarded if both intervals overlap. AGB change is only accepted if there
is no overlap between the intervals. Estimation of AGBmax and AGBmin for each
epoch based on uncertainty layer:

= AGB Loss: AGBmin epoch1 > AGBmax epoch2
= AGB Gain: AGBmax epoch1 < AGBmin epoch2

6.5.2 Validation

Due to the lack of long-term AGB measurements on permanent plots in the study areas accessible for
the GlobBiomass team, it will be very challenging to properly validate this type of product. The AGB
change map products will be validated using high resolution imagery for different epochs where
available. This will allow validation of the complete AGB loss (deforestation) and the AGB gain from
previous non-forest cover conditions (afforestation/reforestation), but it might not allow the
validation of AGB loss (degradation) or gain (growth) in stable forest.
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6.6 South Africa

Changes in forest biomass between 2007, 2010 and 2015 will be mapped at 25/50m resolution by
using change detection algorithms. The classical change-detection approach in SAR remote sensing
involves using the ratio of the local means in the neighborhood of each pair of colocated pixels because
of the multiplicative nature of speckle. This approach assumes that a change in the scene will appear
as a modification of the local mean value of the image. This detection method is robust to speckle
noise, but is limited to the comparison of first-order statistics. Bujor et al. (2004) studied higher-order
statistics for change detection in SAR images and concluded that the ratio of means was useful for step
changes and that the second- and third-order log-cumulants were useful for progressive changes
appearing in consecutive images in multi-temporal series. Because we aim to detect larges changes at
three to five-year temporal frequency, we assume that a modification of the local mean value is
sufficiently reliable to detect changes.

The most obvious approach for change detection is to threshold the ratio image. However, a problem
associated with thresholding approaches is that it tends to lose detail because of the linearly-fixed
boundaries. Fuzzy set theory is conceptually different from the conventional crisp set theory in which
an element either belongs or does not belong to a set. In fuzzy set theory, objects can be assigned
grades of membership in a fuzzy set from zero to one. The method developed in Mermoz et al. (2016),
based on fuzzy expectation-maximisation method, will be tested over the South-African regional site.

6.7 Discussion

Currently biomass change detection algorithms are under development. The most mature is that
proposed for South Africa using the methodology described in Mermoz et al. (2016), which is
applicable to time series of SAR data. This method first detects change, then interprets it in terms of
change in biomass, where the biomass estimates are derived from inversion of the radar data using a
regression equation. This appears not to be well-matched to methods being used for other regions
that are not regression-based. However, because the change detection and change interpretation
steps are independent, the detection phase can still be used as a prelude to applying other methods
to estimate biomass.

The advantage of this approach is that it is statistically well-founded, at least for the detection phase,
because the statistical properties of SAR data are so well characterised. Other proposed methods are
based on subtracting biomass products. This suffers from two problems: (1) the difference product will
have large errors compared to the individual biomass maps; (2) the accuracy of the difference is hard
to characterise if the accuracy of the individual maps is expressed in terms of relative error, as is
currently the case for GlobBiomass. However, we are considering use of such methods, but with the
addition of ancillary knowledge to improve performance.
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7 Relation of regional methods and maps to global product

The regional methods are essentially of two types, data-driven (Poland, Sweden kNN classification with
optical data, Indonesia, Mexico) and model-driven (Sweden with PALSAR data, South Africa). Because
the global methods are designed to function without extensive sets of ground data, they are model-
driven, and hence there is no functional relationship between them and the data-driven approaches.
They use instead effectively the same methods as those described for Sweden (with PALSAR data) and
South Africa (indeed, as written, the “global” algorithm using MIPERS is identical to that for South
Africa). The main data requirements and methods underlying the regional and global products are
summarised in Table 7.1, together with comments on issues concerning high biomass forests (the
regional section of this table is given as Table 7.1).

One of the key functions of the regional studies is to provide the most accurate biomass maps possible
for their study areas, using whatever data are available, in order to provide an assessment of the
accuracy of the global maps. Hence the accuracies of the regional maps must be well defined, and it
must be shown that they themselves are accurate (at some appropriate scale). The global product
must also have a well-defined measure of accuracy, otherwise there will be no way to assess whether
it differs locally from the regional products, i.e., two estimates of biomass can only be compared in
terms of the expected variability inherent in each estimate. These will probably be one of the most
significant challenges in the second year of the project.
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Table 7.1: The primary methods and data requirements of the regional and global approaches,
together with comments on issues concerning high biomass forests

Region Primary Data Primary Method High-Biomass Ground Data
Poland PALSAR 25-m Random Forest, the An implicit assumption Plots, r=12.6 m,
mosaics HH+HV | whole country as an is that Random Forest screened to
(2009+2010), analysis unit can overcome the represent
additionally known saturation homogenous
ERS-2 + ASAR issues around 100...150 | areas and
m3/ha even though the | aggregated
average stem volume is
said to be up to 270
m3/ha
Sweden Optical kNN estimation with Saturation effects not National forest
Spot4/5, Spot 4/5 and NFl data | commented but the inventory plots
PALSAR strips, + water cloud model model relies on stem with 7-m or 10-
8+4 and BIOMASAR volume of dense forest, | m radius
observations approach with multi- | which must be
for 2014 temporal PALSAR estimated for 30-km x
data New Lidar data 30-km processing tiles
used to select the from external sources
best alternative map
Indonesia | PALSAR 25-m regression models, No saturation assumed | Plots, r=16...35
mosaics HH+HV | presumably the based on the earlier m
(2007, whole island as an work by the same
2009+2010), analysis unit, ratio researchers (and others
additionally and texture bands at | but with lower biomass
one ASAR/IM pixel spacing of 100 m | forest) but reference is
coverage AGB=a;e' +a made to (Mitchard et al
2004+2005 e?..+c with so 2011) where L-band
many input variables, | saturation limit is
over-fitting identified | stated to be around
as a challenge 200 tons/ha.
Mexico PALSAR 25-m MaxEnt for Above ground biomass | Plots from the
mosaics estimating over 200 tn/ha is Mexican national
HH+HV, probabilities of assumed to be forest inventory,
Landsat data discrete biomass insignificant in Mexico 1 ha sampled
and DEM data classes and the with 4 plots with
probability weighted aradius of 11.28
average over the m
biomass classes,
whole Mexico
planned as an
analysis unit
South PALSAR 25-m Bayesian approach No saturation assumed | 1-ha plots
Africa mosaics HH+HV | utilizing the water- in savanna areas, it (37...120 of
for 2007 and cloud backscattering remains unclear these)
2010, PALSAR-1 | model whether other forests
dual-pol are mapped or not
(strip?) data for
2015
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Table 7.1. Cont.

mosaics HH+HV
for 2007, 2008,
2009, and 2010

maximum GSV

Region | Primary Data ‘ Primary Method High-Biomass ‘ Ground Data

Global ASAR GM (+higher | BIOMASAR Tile-wise changing MODIS Vegetation
res in places) 1-km maximum GSV Continuous Fields,
data FAO GEZ strata
PALSAR 25-m BIOMASAR Tile-wise changing MODIS Veget.

Continuous Fields,
FAO GEZ strata,
GLAS tree height

PALSAR 25-m

mosaics HH+HV
for 2007, 2008,
2009, and 2010

CESBIO MIPERS,
combination of
regression models
and BIOMASAR-
style
determination of
water-cloud
parameters

Bayesian multiplication

by P(AGB)

1-ha plots, other
more
heterogeneous
plots?

ASAR and PALSAR
generated
biomass maps

Cubist, a machine-
learning black box
for refinement of
special scale from
ASAR 1-km map to
PALSAR 25-m
(...200-m) map

Assumed saturation-
free ASAR 1-km
biomass map

Land cover map
(auxiliary layer)
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Conclusions

The regional and global biomass mapping methods presented here reflect both the data available
and the varying experiences of the project team. A key factor is the amount of in situ data
available: where there are large amounts of in situ data from forest inventory, data-driven
methods, such as kNN, can be developed, but otherwise (as for the global product) a model-based
parametric approach is needed. Sweden provides an interesting test-case, since both methods
can be applied here.

The key dataset in all the regional methods is ALOS-PALSAR (mosaics in all cases except Sweden,
where strip data were used). These data are also of great importance to the global product since,
although it already has a strong backbone provided by biomass maps of the northern boreal and
temperate forests based on C-band data, PALSAR will allow biomass to be estimated at the pixel
size (25m) of the PALSAR mosaics.

For the model-based approaches, information provided by optical sensors, such as land cover and
forest density, is essential for parameterisation, and such data are also exploited in the Mexican
product. DEM data from SRTM are also important in many cases, both to correct for terrain effects
and to mask areas of steep terrain. The global product also uses a wide variety of auxiliary
datasets.

An outstanding question is whether any of the approaches presented here can circumvent the
well-known saturation of L-band data at higher biomass levels. This is particularly relevant for
dense tropical forest, which is a key biome where good biomass information is needed. For this
biome, a particular challenge for GlobBiomass is to demonstrate that its products are superior to
the pan-tropical maps already available from Saatchi et al. (2011) and Baccini et al. (2012) (noting
that improved maps are already available from Saatchi [private communication]).

Accuracy has two components, bias and precision. Underlying all the analysis of accuracy in this
report is the assumption that the biomass estimates are unbiased, so that accuracy can be
estimated in terms only of a zero-mean variation about the true value. (So, for example, the
variance of the total error due to independent error contributions is given by summing the
individual variances.) However, for signals that tend to saturate, as occurs with L-band data for
large biomass, there is a serious risk that estimates will be biased over at least part of the biomass
range. This will also occur if the fitting function used in regression does not capture the true form
of the data over some or all of the biomass range. Unlike the zero-mean element (the precision),
bias cannot be removed by spatial averaging and represents an intrinsic error in the
measurements. Hence a crucial concern for all the products must be to assess whether the
methodology is likely to lead to biases and whether such biases can be quantified and removed.

A further issue is the relation between accuracy and the scale at which biomass information is
presented. Although PALSAR data offers the possibility to provide biomass estimates within 25m
pixels, the useful measurement scale may be significantly larger. This is similar to the case of SAR:
a single-look image offers the highest resolution, but for most purposes does not allow an
accurate enough estimate of the true backscattering coefficient in a distributed target. Spatial
averaging is usually required, so the effective resolution of the measurement may be significantly
reduced. As an example, although the basic BIOMASS data will be 6-look have a ground resolution
of ~50m, recovering biomass with an accuracy of 20% will only be possible at the scale of 4 ha
(200m x 200m).
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